



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 1 von 85

| Aufgestellt: Bayreuth, den 15.03.2024 |                  |         | Unter     | lage zur l                                         | Planfestst | ellung        |
|---------------------------------------|------------------|---------|-----------|----------------------------------------------------|------------|---------------|
|                                       | Erläuterungsb    | erich   | t zum \   | Vorhaben                                           | l          |               |
|                                       | NOR-1            | 2-1 (L  | .anWin    | 1)                                                 |            |               |
| ±525 l                                | kV-HGÜ-Offsho    | -       |           | -                                                  | vstem      |               |
|                                       | nverterplattforr |         |           |                                                    |            |               |
| für den Bereich                       | <u>-</u>         |         |           |                                                    |            | erarode       |
| Tai doi: 20.0.0.                      | – Absch          |         |           | -                                                  |            | oi gi ou o    |
|                                       |                  | 1       |           |                                                    |            |               |
| Prüfvermerk                           | TenneT Offshore  | е       |           |                                                    |            |               |
| Datum                                 | 15.03.2024       |         |           |                                                    |            |               |
| Ersteller                             | Groscurth        |         |           |                                                    |            |               |
| Änderung(en):                         |                  | 1       |           | ı                                                  | •          |               |
| RevNr.                                | Datum            | Erläute | läuterung |                                                    |            |               |
| 01                                    | 15.03.2024       |         |           |                                                    |            |               |
|                                       |                  |         | -Allgemei | kument bzgl. § an verständlic<br>erträglichkeitsbe | he Zusamme | enfassung der |



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Projekt/Vorhaben:

Konverterplattform NOR-12-1 - Unterweser

**Abschnitt Seetrasse** 

Seite 2 von 85

**Antragsteller** 



TenneT Offshore GmbH Bernecker Straße 70 5448 Bayreuth

**Antragsgegenstand** ±525 kV-HGÜ-Offshore-Netzanbindungssystem NOR-12-1 (LanWin1)

Konverterplattform NOR-12-1 – Unterweser für den Bereich 12 sm-Grenze bis

Anlandungspunkt Dornumergrode

Abschnitt Seetrasse

(LH-15-10007)

**Ansprechpartnerin** Lara Groscurth

Large Projects Offshore

Engineering & Services | Licensing Germany

T +49 (0)5132 89-6922 E lara.groscurth@tennet.eu

### An der Aufstellung der Unterlagen sind beteiligt:

Planerstellung und technische Planung Seekabel



eos projekt GmbH Am Fischereihafen 2 26506 Norden

Planerstellung und technische Planung HDD:



#### EIN UNTERNEHMEN DER BPM-GRUPPE

www.bpm-gruppe.de

MOLL-prd GmbH & Co. KG Weststrasse 21 57392 Schmallenberg

Umweltfachlicher Teil:



IBL Umweltplanung GmbH Bahnhofstraße 14a 26122 Oldenburg Tel.: 0441 505017-10 www.ibl-umweltplanung.de

C. Ketzer Zust. Geschäftsführer: Projektleitung: A. Freund





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 3 von 85

### Inhaltsverzeichnis

| Abbildungs | verzeichnis                                                                                         | 6    |
|------------|-----------------------------------------------------------------------------------------------------|------|
| Tabellenve | rzeichnis                                                                                           | 7    |
| Abkürzungs | sverzeichnis                                                                                        | 8    |
| Vorbemerk  | ung zu den Projektbezeichnungen                                                                     | . 10 |
| Vorbemerk  | ung zum Planfeststellungsverfahren                                                                  | 11   |
| 1. Allgem  | neine Projektbeschreibung                                                                           | 13   |
| 1.1. D     | Die Vorhabenträgerin                                                                                | . 13 |
| 1.2. G     | Sesamtvorhaben und Abgrenzung des Genehmigungsgegenstandes                                          | . 15 |
| 1.2.1.     | Projektdefinition, Umfang des Gesamtvorhabens                                                       | 15   |
| 1.2.2.     | Teilabschnitt Seekabeltrasse im Küstenmeer inklusive Querung des Landesschutzde (Antragsgegenstand) |      |
| 1.3. P     | Planrechtfertigung und Vorhabenbegründung                                                           | . 21 |
| 1.3.1.     | Energiewirtschaftliches Erfordernis und energierechtliche Festlegungen                              | . 22 |
| 1.3.2.     | Umsetzungsauftrag für die Vorhabenträgerin                                                          | . 26 |
| 1.3.3.     | Verträglichkeit und Antrag auf Ausnahme gemäß § 34 BNatschG                                         | . 26 |
| 1.3.4.     | Leerrohrmitnahme durch NOR-9-2 (BalWin3) gem. § 43j EnWG                                            | . 28 |
| 1.4. V     | /erfahren                                                                                           | . 31 |
| 1.5. Z     | uständigkeiten                                                                                      | . 32 |
| 1.5.1.     | Vorhabenträgerin                                                                                    | . 32 |
| 1.5.2.     | Planfeststellungsbehörde                                                                            | . 32 |
| 1.6. A     | bschnittsbildung                                                                                    | . 32 |
| 1.6.1.     | Rechtliche Zulässigkeit der Abschnittsbildung                                                       | . 33 |
| 1.6.2.     | Gründe für die Festlegung der Genehmigungsabschnitte                                                | . 34 |
| 1.6.3.     | Prognostische Beurteilung des Gesamtvorhabens                                                       | . 35 |
| 2. Raum    | ordnung und Landesplanung                                                                           | . 37 |
| 2.1. G     | Segenstand und Ergebnis des Raumordnungsverfahrens "Seetrassen 2030"                                | . 37 |
| 2.2. A     | bweichungen vom Raumordnungsverfahren im Planfeststellungsverfahren                                 | . 38 |
| 2.3. F     | estlegungen im Landesraumordnungsprogramm (LROP)                                                    | . 39 |
| 3. Besch   | reibung des beantragten Trassenverlaufs                                                             | . 41 |
| 3.1. T     | rassierungsgrundsätze                                                                               | . 41 |
| 3.2. T     | rassenbeschreibung                                                                                  | . 41 |
| 3.3. K     | reuzungen                                                                                           | . 45 |





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 4 von 85

|    | 3.4. | Schifffahrt                                                                | 45 |
|----|------|----------------------------------------------------------------------------|----|
| 4. | Alte | rnativen                                                                   | 47 |
|    | 4.1. | Technische Alternative: Drehstromübertragung                               | 47 |
|    | 4.2. | Technische Alternative: Offene Bauweise über das Ostende Baltrums          | 47 |
|    | 4.3. | Alternativer Netzverknüpfungspunkt                                         | 49 |
|    | 4.4. | Nichtleitungsgebundener Energietransport                                   | 50 |
|    | 4.5. | Trassenalternativen                                                        | 50 |
|    | 4.6. | Nullvariante: Verzicht auf das geplante Vorhaben                           | 51 |
| 5. | Erlä | uterungen zur technischen Ausführung der Leitung                           | 52 |
|    | 5.1. | Seekabel                                                                   | 52 |
|    | 5.2. | Steuerkabel                                                                | 54 |
| 6. | Bes  | chreibung der Baumaßnahmen                                                 | 55 |
|    | 6.1. | Allgemeines                                                                | 55 |
|    | 6.2. | Baujahre und Bauzeitenfenster                                              | 57 |
|    | 6.3. | HDD Dornumergrode                                                          | 59 |
|    | 6.4. | HDD Baltrum                                                                | 63 |
|    | 6.5. | Kabelinstallation von Dornumergrode bis Baltrum                            | 64 |
|    | 6.6. | Kabelinstallation von Baltrum bis zur 8-14 m-Tiefenlinie                   | 67 |
|    | 6.7. | Kabelinstallation von der 8-14 m-Tiefenlinie bis zur 12 sm-Grenze          | 68 |
| 7. | lmn  | nissionen und ähnliche Wirkungen                                           | 70 |
|    | 7.1. | Schallimmissionen                                                          | 70 |
|    | 7.2. | Elektrische und magnetische Felder                                         | 70 |
|    | 7.2. | 1. Elektrische Felder                                                      | 70 |
|    | 7.2. | 2. Magnetische Felder                                                      | 70 |
|    | 7.3. | Erwärmung des Meeresbodens                                                 | 71 |
| 8. | Bet  | riebsbeschreibung                                                          | 73 |
|    | 8.1. | Beschreibung des Betriebes der Leitung                                     | 73 |
|    | 8.2. | Beschreibung des Betriebs im Zusammenhang mit der Schiffsverkehrssituation |    |
|    | 8.2. | Gefahrendarstellung in der Betriebsphase                                   | 74 |
|    | 8.2. | ·                                                                          |    |
| 9. | Gru  | ndstücksinanspruchnahme und Leitungseigentum                               |    |
|    | 9.1. | Allgemeine Hinweise                                                        | 77 |
|    | 92   | Dauerhafte Inanspruchnahme von Grundstücken                                | 77 |





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 5 von 85

| 9.3.      | Vorübergehende Inanspruchnahme von Grundstücken      | . 78 |  |  |  |  |
|-----------|------------------------------------------------------|------|--|--|--|--|
| 9.4.      | Entschädigungen                                      | . 79 |  |  |  |  |
| 9.5.      | Kreuzungsverträge/Gestattungen                       | . 79 |  |  |  |  |
| 9.6.      | Wegenutzung                                          | . 79 |  |  |  |  |
| 9.7.      | Erläuterung zum Grunderwerbsverzeichnis (Anlage 9.1) | . 79 |  |  |  |  |
| 9.8.      | Erläuterungen zum Kreuzungsverzeichnis (Anlage 5)    | . 80 |  |  |  |  |
| 10. Reg   | geln und Richtlinien                                 | . 81 |  |  |  |  |
| Literatur | verzeichnis                                          | . 82 |  |  |  |  |
| Rechtsq   | Rechtsquellenverzeichnis84                           |      |  |  |  |  |





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 6 von 85

### Abbildungsverzeichnis

| Abbildung 1: Organisation und Eigentumsstruktur der TenneT Offshore GmbH                                                                                                                                              | 13      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Abbildung 2: TenneTs Netz in Deutschland und den Niederlanden                                                                                                                                                         | 14      |
| Abbildung 3: Trassenverlauf des ONAS LanWin1 (NOR-12-1) vom Konverter N-12-1 bis zur Unterweser                                                                                                                       |         |
| Abbildung 4: Übersicht einer Netzanbindung mit Hochspannungs-Gleichstrom-Technik                                                                                                                                      | 17      |
| Abbildung 5: Übersicht eines Offshore-Netzanbindungssystems                                                                                                                                                           | 18      |
| Abbildung 6: Übersicht der Abschnittsbildung für das Vorhaben LanWin1 (NOR-12-1)                                                                                                                                      | 18      |
| Abbildung 7: Trassenverlauf mit Bauabschnitten und Nationalparkzonen                                                                                                                                                  | 20      |
| Abbildung 8: FEP 2023 Kartenteil (Quelle BSH 2023)                                                                                                                                                                    | 24      |
| Abbildung 9: Auszug FEP 2023 Kartenteil (Quelle BSH 2023). LanWin1-Bezugspunkte: Fläche N-1: Grenzkorridor N-III mit grauen Pfeilen gekennzeichnet.                                                                   | 2.1 und |
| Abbildung 10: HDD Baulokationen bei Dornumergrode nach den jeweiligen Baujahren                                                                                                                                       | 29      |
| Abbildung 11: Bauabschnitte im Küstenmeer                                                                                                                                                                             | 43      |
| Abbildung 12: Alternative Inselquerung am Oststrand                                                                                                                                                                   | 48      |
| Abbildung 13: Beispielhafter Aufbau eines Seekabels, Legende siehe Tabelle 7 (Quelle: Pr Powerlink)                                                                                                                   |         |
| Abbildung 14: Lichtwellenleiterkabel (LWL-Kabel) für den Offshore-Bereich (Quelle: Ericsson)                                                                                                                          | 54      |
| Abbildung 15: Luftbild einer exemplarischen Wasserbaustelle bei Hilgenriedersiel mit dem Arbeits am Bohraustrittspunkt im Hintergrund und dem Anlege- und Fährponton am Riffgat- Fahrwas Vordergrund (Quelle: TenneT) | sser im |
| Abbildung 16: Arbeitsschritte des geplanten Horizontalbohrverfahrens (HDD)                                                                                                                                            | 62      |
| Abbildung 17: Beispielhafte Wasserbaustelle im Norderneyer Inselwatt (Quelle: MOLL-prd)                                                                                                                               | 64      |
| Abbildung 18: Kabelverlegung im Watt mit Hilfe eines Vibrationsschwertes (Quelle: eos projekt)                                                                                                                        | 66      |
| Abbildung 19: Auslegung der Kabelschleife (Quelle: eos projekt)                                                                                                                                                       | 66      |
| Abbildung 20: Verlegeschiff Topaz Installer (Quelle: VSMC)                                                                                                                                                            | 69      |



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 7 von 85

### **Tabellenverzeichnis**

| Tabelle 1: Übersicht über die fünf ONAS des Baltrum-Korridors                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Tabelle 2: Leitungslängen der Trassenabschnitte                                                                                            |
| Tabelle 3: Genehmigungsabschnitte des Gesamtvorhabens LanWin1 (NOR-12-1)                                                                   |
| Tabelle 4: Bauabschnitte und geplante Baumaßnahmen für LanWin1 im Genehmigungsabschnitt Küstenmeer (12 sm-Grenze bis Dornumergrode)        |
| Tabelle 5: Aufteilung des Untersuchungsgebietes in drei Verkehrszonen                                                                      |
| Tabelle 6: VTG Verkehrszahlen Nordsee 2018                                                                                                 |
| Tabelle 7: Aufbau des Seekabels am Beispiel eines VPE Kabels                                                                               |
| Tabelle 8: Übersicht über die geplanten Installationstiefen und -arten in den Bauabschnitten 57                                            |
| Tabelle 9: Baujahre und Bauzeitenfenster der geplanten Baumaßnahmen                                                                        |
| Tabelle 10: Nachrichtliche Darstellung der geplanten Baustellenjahre aller ONAS über Baltrum 59                                            |
| Tabelle 11: Zusammenfassung der magnetischen Immissionen in 0,2 m Höhe oberhalb der Erdbodenoberfläche gemäß Magnetfeldberechnung [2020]71 |
| Tabelle 12: Leitertemperaturen und Erwärmungen im Aufpunkt für die drei untersuchten Bereiche bei einem Leiterquerschnitt von 2500 mm²72   |
| Tabelle 13: Maßnahmen zur Risikominimierung in der Betriebsphase                                                                           |



Seite 8 von 85

Projekt/Vorhaben: NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung

Konverterplattform NOR-12-1 - Unterweser

**Abschnitt Seetrasse** 

### Abkürzungsverzeichnis

A Ampere (Einheit)

AC alternating current (Wechselstrom)

ArL Amt für regionale Landesentwicklung Weser-Ems

AWZ ausschließliche Wirtschaftszone

BE Baustelleneinrichtung

BE-Fläche Baustelleneinrichtungsfläche
BfN Bundesamt für Naturschutz

BImSchV Bundes-Immissionsschutzverordnung

BNatSchG Bundesnaturschutzgesetz

BNetzA Bundesnetzagentur

BRZ Bruttoraumzahl

BSH Bundesamt für Seeschifffahrt und Hydrographie

BVerwG Bundesverwaltungsgericht
DC direct current (Gleichstrom)
DIN Deutsches Institut für Normung

Din Dedisones institut for normang

EEG Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz)

EN Europäische Norm

EnWG Energiewirtschaftsgesetz
FEP Flächenentwicklungsplan
FFH Fauna-Flora-Habitat

GDWS Generaldirektion Wasserstraßen und Schifffahrt
GG Grundgesetz für die Bundesrepublik Deutschland

GW Gigawatt

HDD Horizontal Directional Drilling (Gesteuertes Horizontalbohrverfahren)

HGÜ Hochspannungs-Gleichstrom-Übertragung

HVDC-Kabel Hochspannungs-Gleichstromkabel

HW Hochwasser (im Betrachtungszeitraum)

IBN Inbetriebnahme

IMO International Maritime Organization (Internationale Seeschifffahrtsorganisation

K Kelvin (Einheit)
KP Kilometerpunkt

kV Kilovolt

KVZ Küstenverkehrszone

LBP Landschaftspflegerischer Begleitplan
LROP Landesraumordnungsprogramm



Projekt/Vorhaben: NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Seite 9 von 85

Konverterplattform NOR-12-1 - Unterweser

**Abschnitt Seetrasse** 

LWL Lichtwellenleiter (Fiber Optical-Kabel)

MAG Magnetometer-Sonden

MBES Multibeam-Echosounder (Fächerecholot)

MSRL Meeresstrategie-Rahmenrichtlinie

MW Megawatt

Nds. Niedersachsen/niedersächsisch

NEP Netzentwicklungsplan

NLPV Nationalparkverwaltung Niedersächsisches Wattenmeer

NLStBV Niedersächsische Landesbehörde für Straßenbau und Verkehr

NLWKN Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz

NROG Niedersächsisches Raumordnungsgesetz

NVP Netzverknüpfungspunkt

NVwZ Neue Zeitschrift für Verwaltungsrecht

ONAS Offshore-Netzanbindungssystem

OWP Offshore-Windpark
ROG Raumordnungsgesetz
ROV Raumordnungsverfahren

RROP Regionales Raumordnungsprogramm

RSL Rückspülleitung

SBP Sub Bottom Profiler (Sedimentecholot)

sm Seemeile

SSS Side-Scan Sonar (Seitensichtsonar)

TROV trenching remotely operated vehicle (Unterwasser-Eingrabegerät)

UCTE Union for the Co-ordination of Transmission of Electricity

ÜNB Übertragungsnetzbetreiber

UVP Umweltverträglichkeitsprüfung

UVPG Umweltverträglichkeitsprüfungsgesetz

UXO Unexploded Ordnance (nicht explodierte Munition)

VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.

VTG Verkehrstrennungsgebiet

VwVfG Verwaltungsverfahrensgesetz

WaStrG Bundeswasserstraßengesetz

WHG Gesetz zur Ordnung des Wasserhaushalts (Wasserhaushaltsgesetz)
WindSeeG Gesetz zur Entwicklung und Förderung der Windenergie auf See

WRRL Wasserrahmenrichtlinie



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 10 von 85

### Vorbemerkung zu den Projektbezeichnungen

Insgesamt verlaufen fünf Offshore-Netzanbindungssysteme (ONAS) über den Baltrum-Korridor. Hierbei handelt es sich (von West nach Ost) um die ONAS BalWin4 (NOR-9-3), BalWin3 (NOR-9-2), LanWin1 (NOR-12-1), LanWin4 (NOR-11-2) und LanWin5 (NOR-13-1).

Die wesentlichen Vorgaben zur Zuordnung und Benennung der ONAS ergeben sich grundsätzlich aus dem Flächenentwicklungsplan (FEP) und dem Netzentwicklungsplan (NEP). Die Benennung der ONAS im FEP ergibt sich üblicherweise aus der Ordnungszahl der Windparkflächen. So setzt sich z.B. die Bezeichnung NOR-12-1 zusammen aus "NOR" für Nordsee und "12" für das Gebiet, in dem sich die vom ONAS anzubindenden Windparkflächen befinden. Die zweite Ziffer (hier "1") basiert auf einer fortlaufenden Durchnummerierung der ONAS. Aufgrund der Erhöhung der Ausbauziele und dem damit einhergehenden neuen Zuschnitt der Gebiete, weichen die Bezeichnungen mancher ONAS nun von den Gebieten ab. Je nach Kapazität der Windparkflächen, bindet ein ONAS entweder eine oder zwei Flächen an, sodass in Summe jeweils 2 GW von jedem ONAS angebunden werden. NOR-12-1 bindet die Fläche N-12.1 an.

Im Zuge der Umsetzungsplanung der daraus resultierenden Projekte im NEP bekommen diese eine zusätzliche Projektbezeichnung durch die Übertragungsnetzbetreiber (ÜNB). Die Namensgebung orientiert sich hierbei an geographischen Gegebenheiten im Küstenmeer. So werden die Gebiete N-11, N-12 und N-13 auch als sog. "LanWin-Cluster" bezeichnet, sodass die ONAS seitens der ÜNB mit dieser Bezeichnung versehen und dann durchnummeriert werden. NOR-12-1, NOR-11-2 und NOR-13-1 werden somit als LanWin1, LanWin4 und LanWin5 bezeichnet. NOR-9-3 und NOR-9-2 werden dagegen dem sog. "BalWin-Cluster" zugeordnet und daher BalWin4 und BalWin3 genannt.

Tabelle 1: Übersicht über die fünf ONAS des Baltrum-Korridors

| Bezeichnung<br>gemäß FEP 2023 | Bezeichnung<br>durch ÜNB | Anzubindende<br>Windparkflächen | Inbetrieb-<br>nahme | Netzverknüpfungs-<br>punkt (NVP) |
|-------------------------------|--------------------------|---------------------------------|---------------------|----------------------------------|
| NOR-9-3                       | BalWin4                  | N-9.3, N-10.2                   | 2029                | Unterweser                       |
| NOR-9-2                       | BalWin3                  | N-9.2                           | 2029                | Wilhelmshaven2                   |
| NOR-12-1                      | LanWin1                  | N-12.1                          | 2030                | Unterweser                       |
| NOR-11-2                      | LanWin4                  | N-11.2, N-13.1                  | 2031                | Wilhelmshaven2                   |
| NOR-13-1                      | LanWin5                  | N-12.3, N-13.2                  | 2031                | Rastede                          |

Gegenstand des vorliegenden Antrages ist ausschließlich das ONAS NOR-12-1 (LanWin1). Die ersten zwei ONAS des Baltrum-Korridors sind mit den Bezeichnungen NOR-9-3 bzw. NOR-9-2 ins Planfeststellungsverfahren gegangen, da zu diesem Zeitpunkt die ÜNB-Bezeichnungen noch nicht abschließend geklärt waren. Da die Bezeichnungen mittlerweile feststehen, werden in dem hier vorliegenden Antrag vorwiegend die ÜNB-Bezeichnungen verwendet.



## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 11 von 85

### Vorbemerkung zum Planfeststellungsverfahren

Der vorliegende Erläuterungsbericht behandelt die Errichtung und den Betrieb der 525-kV-DC-Leitung LanWin1 (NOR-12-1) – Unterweser in dem Abschnitt der Seekabeltrasse von der 12 sm-Grenze zum Anlandungspunkt Dornumergrode.

Diese Leitung ist ein Teilabschnitt des Offshore-Netzanbindungssystems (ONAS) LanWin1 (NOR-12-1), das gemäß FEP des Bundesamtes für Seeschifffahrt und Hydrographie (BSH) den Offshore-Windpark in der Fläche N-12.1 im Gebiet N-12 in der Nordsee an den Netzverknüpfungspunkt (NVP) im Umspannwerk Unterweser anbinden soll. In Betrieb gehen soll das ONAS voraussichtlich im Jahr 2030.

Für die Herstellung der Leitung sind drei Hochspannungs-Gleichstromkabel, bestehend aus einem Hin- und Rückleiterkabel sowie einem metallischen Rückleiter und ein separates Lichtwellenleiterkabel (LWL-Kabel) zur Kommunikation und Anlagensteuerung vorgesehen.

Das ONAS soll in Übereinstimmung mit dem FEP mittels +-525-kV-DC-Technologie und mit einer Übertragungskapazität von 2000 MW erfolgen. Die Betriebsspannung der Gleichstromleitung (DC) beträgt gegen Erdpotenzial jeweils ca. + und - 525 kV also zwischen Hin- und Rückleiter ca. 1050 kV. Diese Festlegungen sind für die ÜNB sowie für die Planfeststellung und die Plangenehmigung nach den §§ 43 bis 43d Energiewirtschaftsgesetz (EnWG) verbindlich.

Das Gesamtvorhaben erstreckt sich über die Deutsche Ausschließliche Wirtschaftszone der Nordsee (AWZ), die 12 Seemeilen-Zone (12 sm-Zone) sowie Landbereiche von Niedersachsen zwischen Dornumergrode (Landkreis Aurich) und Unterweser. Ausgehend von der Konverterplattform im Gebiet N-12 in der AWZ führt die Netzanbindung über den vom FEP vorgegebenen Grenzkorridor N-III zwischen AWZ und 12 sm-Zone durch Teilbereiche Niedersachsens zum im NEP festgelegten NVP Unterweser (Landkreis Wesermarsch).

Für die Planung, Errichtung und den Betrieb dieser Netzanbindung ist nach EnWG der ÜNB zuständig, an dessen Netz die Anbindung erfolgen muss. Dazu sind auch die erforderlichen Genehmigungen durch den ÜNB einzuholen.

Die Vorhabenteile, die in der AWZ zu realisieren sind, bedürfen nach § 45 des Gesetzes zur Entwicklung und Förderung der Windenergie auf See (Windenergie-auf-See-Gesetz – WindSeeG) der Planfeststellung durch das BSH. Für die Genehmigung der Vorhabenteile in Niedersachsen ist gem. § 43 Absatz 1 Satz 1 Nummer 2 EnWG ein Planfeststellungsverfahren vorgeschrieben, mit Ausnahme der Konverterstation an Land, deren Zulassung nach dem Bundesimmissionsschutzgesetz (BImSchG) erfolgt.

Linienförmige Vorhaben können in Teilabschnitten verwirklicht werden. Die Bildung von Planungsabschnitten ist zulässig, wenn sie sich sachlich rechtfertigen lässt und ihrerseits das Ergebnis planerischer Abwägung ist. Hiervon soll im Hinblick auf den Teilabschnitt der Seetrasse in der 12 sm-Zone (Niedersächsisches Küstenmeer) einerseits und den Abschnitt der Landtrasse bis nach Unterweser andererseits Gebrauch gemacht werden. Eine solche Abschnittsbildung drängt sich sachlich auf, da seeseitig ganz andere öffentliche und nur wenige private Belange



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 12 von 85

durch das Vorhaben betroffen sind, als dies auf dem Teil der Landtrasse der Fall ist. Auch sind im Wesentlichen andere Fachbehörden zu beteiligen. Art und Weise der Kabelverlegung unterscheiden sich ebenfalls deutlich.

Der hier vorliegende Antrag beinhaltet die Seetrasse von der Übergangsmuffe zwischen Landund Seekabel im Bereich des Anlandungspunkt Dornumergrode bis zur Grenze der 12 sm-Zone. Die anderen Teilabschnitte in der AWZ sowie an Land sind nicht Gegenstand der vorliegenden Antragstellung.

Die Planfeststellungsverfahren für die Seetrassen der zwei im Westen parallel verlaufenden Vorhaben BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2) laufen bereits. Die Planfeststellungsverfahren der zwei im Osten parallel verlaufenden Vorhaben LanWin4 (NOR-11-2) und LanWin5 (NOR-13-1) werden voraussichtlich leicht zeitversetzt nach LanWin1 (NOR-12-1) beantragt.

Einige Teilbaumaßnahmen werden von mehreren bzw. allen fünf Vorhaben genutzt und werden im Rahmen der anderen Planfeststellungsverfahren bereits beantragt. Dies betrifft das erste der drei Kabelschutzrohre für die Unterquerung des Dornumer Landesschutzdeiches (Leerrohrmitnahme gemäß § 43j EnWG, siehe Kapitel 1.3.5), die Baustellenzufahrt binnendeichs, den Laufsteg ins Watt vor Dornumergrode, die Rückspülleitungen für die HDD-Bohrungen in Dornumergrode und Baltrum sowie die Dalbenreihe und den Zugangssteg südlich der Insel Baltrum.

Sämtliche bereits bewerteten und bilanzierten Flächen und Installationen werden in den umweltfachlichen Antragsunterlagen von LanWin1 (NOR-12-1) aufgrund der positiven Planungsprognose für die sich bereits im fortgeschrittenen Verfahren befindlichen Projekte BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2) als existent betrachtet und daher nicht erneut bilanziert (siehe Anlage 8.1). Dennoch werden diese Teilbaumaßnahmen im vorliegenden Antrag nachrichtlich beschrieben und dargestellt.

Dieser Erläuterungsbericht dient der Erklärung und Erläuterung des planfestzustellenden Abschnitts des Vorhabens, seiner Begründung, technischen Ausführung in Bau und Betrieb sowie die Rechte Dritter. Die Darstellung der jeweiligen Betroffenheit sind den Antragsunterlagen zu entnehmen.





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 - Unterweser

**Abschnitt Seetrasse** 

Seite 13 von 85

Anlage 1

### 1. Allgemeine Projektbeschreibung

### 1.1. Die Vorhabenträgerin

Die TenneT Offshore GmbH führt im Auftrag ihrer Schwestergesellschaft TenneT TSO GmbH Planung, Bau und Betrieb von ONAS für die Windenergie auf See bis zum NVP an Land aus. Die TenneT Offshore GmbH ist Eigentümerin dieser Anbindungsleitungen und als solche auch Antragstellerin im Planfeststellungsverfahren und somit Vorhabenträgerin.

Die TenneT TSO GmbH als einer der vier ÜNB in Deutschland ist seit Dezember 2006 gesetzlich verpflichtet, Netzanschlüsse für Offshore-Windparks in ihrer Regelzone zu errichten und zu betreiben. Beide Unternehmen sind Teil der TenneT GmbH & Co. KG wie in der folgenden Abbildung 1 dargestellt.

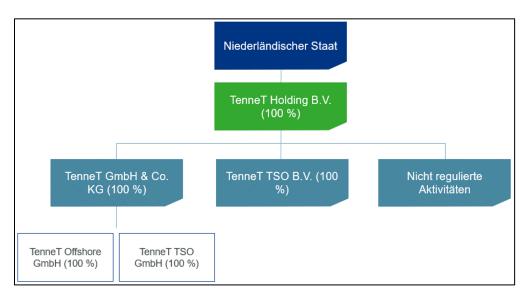
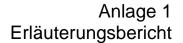




Abbildung 1: Organisation und Eigentumsstruktur der TenneT Offshore GmbH

Als TenneT wird im Folgenden die TenneT Holding B.V. inklusive ihrer Tochtergesellschaften TenneT Offshore GmbH (nachfolgend TenneT Offshore genannt) und TenneT TSO GmbH (nachfolgend TenneT TSO) genannt bezeichnet.

TenneT ist der erste grenzüberschreitende ÜNB für Strom in Europa. Mit ungefähr 25.000 Kilometern an Hoch- und Höchstspannungsverbindungen und 43 Millionen Endverbrauchern in den Niederlanden und in Deutschland gehört TenneT zu den Top 5 der Netzbetreiber in Europa. Der Fokus des Unternehmens richtet sich auf die Entwicklung eines nordwesteuropäischen Energiemarktes und auf die Integration erneuerbarer Energie.

Die TenneT TSO GmbH mit Sitz in Bayreuth ist für den Betrieb, die Instandhaltung und die weitere Entwicklung des Stromübertragungsnetzes der Spannungsebenen 220 kV und 380 kV in großen Teilen Deutschlands verantwortlich. Das Unternehmen steht für einen ebenso sicheren wie fairen Zugang aller Marktteilnehmer zum Höchstspannungsnetz.





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 14 von 85

**Abschnitt Seetrasse** 

Das Netz in Deutschland reicht von der Grenze Dänemarks bis zu den Alpen und deckt mit einem Netzgebiet von 140.000 Quadratkilometern rund 40 Prozent der Fläche Deutschlands ab (siehe Abbildung 1). Die Leitungen verlaufen in Schleswig-Holstein, Niedersachsen, Hessen, Bayern und Teilen Nordrhein-Westfalens und in der AWZ der Nordsee.

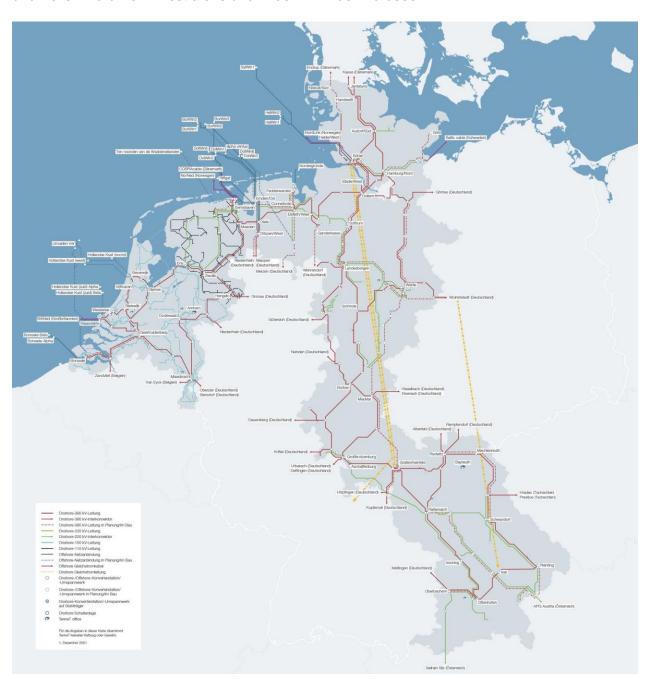



Abbildung 2: TenneTs Netz in Deutschland und den Niederlanden



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 15 von 85

**Abschnitt Seetrasse** 

### 1.2. Gesamtvorhaben und Abgrenzung des Genehmigungsgegenstandes

### 1.2.1. Projektdefinition, Umfang des Gesamtvorhabens

Um Netzanbindungen für die in der Nordsee vorgesehenen Windparks planen zu können, sind diese in räumliche Zonen und Gebiete innerhalb der AWZ eingeteilt und werden danach benannt. Die wesentlichen Vorgaben zur Zuordnung und Benennung der Anbindungssysteme ergeben sich aus dem FEP des BSH sowie aus dem NEP der ÜNB und der Bundesnetzagentur (BnetzA), welche auf Grundlage des WindSeeG und des EnWG entwickelt werden (siehe auch Kapitel 1.3). Im FEP festgelegte räumliche Bezugspunkte für die Planung, Errichtung und Inbetriebnahme der Netzanbindung sind die vorgenannten Flächen der anzubindenden Offshore-Windparks sowie der Grenzkorridor für den Übergang zwischen AWZ und 12 sm-Zone/Küstenmeer (Gate N-III). Der NEP legt den NVP fest. Gemäß NEP 2023-2037/2045 vom 1. März 2024 liegt dieser in Unterweser.

Das ONAS LanWin1 (NOR-12-1) bindet einen Offshore-Windpark im Gebiet N-12 an das Übertragungsnetz an Land an, in diesem Fall am NVP Unterweser in Niedersachsen. Die anzubindenden Fläche N-12.1 hat eine Größe von etwa 193 km² und befindet sich in der Zone 3 der AWZ. Sie liegt südöstlich der Schifffahrtsroute SN10 und nördlich der Schifffahrtsroute SN4. Im Norden bzw. Osten wird die Fläche begrenzt durch die Fläche N-12.2 bzw. N-11.1. Abbildung 3 zeigt schematisch die Netzanbindung LanWin1 (NOR-12-1) in seiner Ausdehnung zwischen dem Gebiet N-12.1 und dem NVP in Unterweser.

Von der Konverterplattform auf See, deren Standort durch den FEP in der Mitte der Fläche N-12.1 festgelegt ist, verläuft die Netzanbindungsleitung LanWin1 (NOR-12-1) zunächst südlich der Fläche N-12.1 und kreuzt dort den Interkonnektor NorNed. Die Leitung verläuft weiter in südöstlicher Richtung bis sie auf die Gaspipeline Europipe 2 trifft und parallel zu dieser in Richtung Süden abknickt. Nachdem die Leitung zunächst auf der westlichen Seite der Pipeline verläuft, kreuzt sie diese im weiteren Verlauf und verläuft dann auf der östlichen Seite der Pipeline in Richtung 12 sm-Grenze. Auf dem Weg zur 12 sm-Grenze kreuzt die Leitung LanWin1 (NOR-12-1) die zukünftige Leitung des ONAS BorWin6 (NOR-7-2) und verläuft ab hier parallel zu den zukünftigen Leitungen der ONAS BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2). Gemeinsam mit diesen beiden ONAS (im Westen) sowie den nachfolgenden ONAS LanWin4 (NOR-11-2) und LanWin5 (NOR-13-1) (im Osten) werden die schifffahrtsrechtlichen Verkehrstrennungsgebiete (VTG) "German Bight Western Approach" und "Terschelling German Bight" gekreuzt. Via Grenzkorridor N-III gehen die fünf ONAS ins niedersächsische Küstenmeer über.

Nach Verlassen des VTG und vor Eintritt in das Gebiet des Nationalpark Niedersächsisches Wattenmeer werden die beiden Pipelines Europipe 1&2 gekreuzt. Die Trasse verläuft in südöstlicher Richtung auf die Insel Baltrum zu. Diese wird mittels gesteuertem Horizontalspülbohrverfahren (Horizontal Directional Drilling, HDD) unterquert. Südlich von Baltrum verläuft die Trasse in Richtung Dornumergrode. Der Landesschutzdeich wird ebenfalls mittels HDD unterquert. Binnendeichs befindet sich dann auch die Übergangsmuffe zum Landkabel. Dies markiert auch das Ende des Genehmigungsabschnittes Seetrasse.

An Land verläuft die Trasse weiter bis zum NVP in Unterweser. Für diesen landseitigen Verlauf wurde ein Raumordnungsverfahren ("Landtrassen 2030") durchgeführt, aus dem ein am 30. März





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Konverterplattform NOR-12-1 – Unterweser** Seite 16 von 85

**Abschnitt Seetrasse** 

2023 landesplanerisch festgestellter Korridor hervorgegangen ist (siehe Abbildung 3).

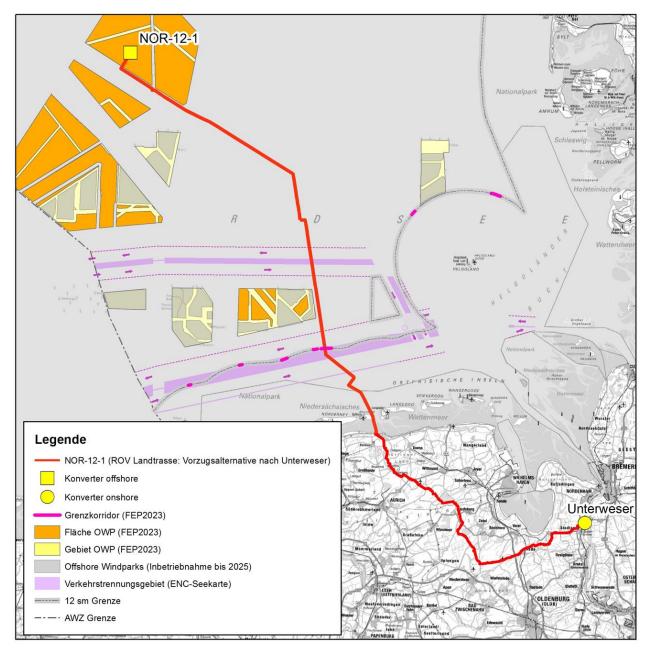



Abbildung 3: Trassenverlauf des ONAS LanWin1 (NOR-12-1) vom Konverter N-12-1 bis zum NVP Unterweser



### Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 17 von 85

<u>Technisch</u> umfasst das Gesamtvorhaben alle Komponenten, die erforderlich sind, um regenerative elektrische Energie von den angeschlossenen Windparks bis zum NVP zu transportieren. Im Einzelnen sind dies:

- Plattform mit Schaltanlagen und Konverterstation,
- 525-kV-DC-Leitung als See- und Landkabel (+/-525 kV-DC-Technologie, Erläuterung siehe unten).
- Steuerkabel mit Lichtwellenleiter (See- und Landkabel),
- Konverterstation nahe des Umspannwerks sowie
- AC Kabel von Konverterstation zum Umpannwerk im Bereich Unterweser.

Die Energieableitung erfolgt über eine mit Hochspannungs-Gleichstrom betriebene Netzanbindungsanlage, die im Bereich Unterweser an das 380-kV-Übertragungsnetz angeschlossen wird. Die Betriebsspannung der Gleichstromleitung (DC) beträgt gegen Erdpotenzial jeweils ca. + und – 525 kV. Die betriebsinterne LH-Leitungsnummer lautet LH-15-10005.

Die nachfolgende Abbildung 4 die Einzelkomponenten sowie die Eigentumsverhältnisse einer Netzanbindungsanlage mit Hochspannungs-Gleichstrom-Übertragung (HGÜ). Die TenneT Offshore GmbH ist Eigentümerin der ONAS zwischen dem seeseitigen Netzanschlusspunkt (NAP) und dem landseitigen NVP. Die Offshore-Windparks einschließlich der 66-kV-Leitungen zum NAP sind Eigentum der jeweiligen Offshore-Windpark-Betreiber.

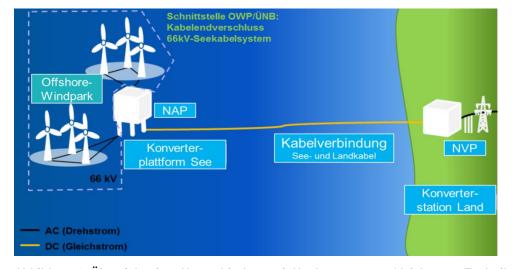



Abbildung 4: Übersicht einer Netzanbindung mit Hochspannungs-Gleichstrom-Technik

Die in den Windparks erzeugte regenerative Energie wird über Drehstromseekabel (AC) der jeweiligen Windparkbetreiber zur Konverterplattform der TenneT Offshore geleitet. Auf der Plattform verbindet eine Schaltanlage die einzelnen Drehstromleitungen mit einer Konverteranlage, die die Umrichtung des Drehstromes in Gleichstrom vornimmt (AC zu DC). Eine Leitung, bestehend aus zwei Hochspannungs-Gleichstromkabeln (Hin- und Rückleiter) sowie einem metallischen Rückleiter, verbindet die Konverter auf See und an Land miteinander und übernimmt die Energieübertragung. Der landseitige Konverter wird am Umspannwerk errichtet und formt den Gleichstrom wiederum in Drehstrom um (DC zu AC), der über eine AC-Anbindung



Projekt/Vorhaben: NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 18 von 85

und Schaltanlage im Umspannwerk in das 380-kV-Übertragungsnetz eingespeist wird. Die technische Ausführung gestattet sowohl den Abtransport der (Wind-)Energie als auch die unterbrechungsfreie Versorgung der Plattform und des Windparks für deren Eigenbedarf. Sie gewährleistet somit auch Sicherheit und Bestand der Anlagen, sofern keine Energieerzeugung auf See möglich ist.

Die nachfolgende Abbildung 5 zeigt das vereinfachte Schema eines ONAS, deren Prinzip auch das Vorhaben LanWin1 (NOR-12-1) entspricht.

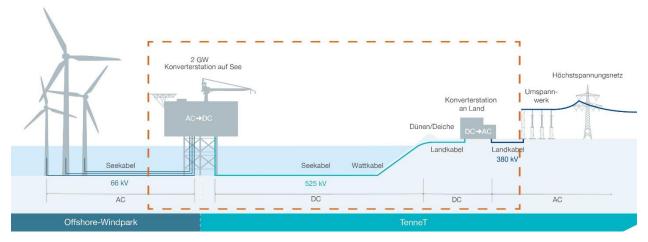



Abbildung 5: Übersicht eines Offshore-Netzanbindungssystems

Die Leitung von LanWin1 (NOR-12-1) gliedert sich in zwei Seekabelabschnitte und einen Landkabelabschnitt. Der Übergang zwischen Land- und Seekabeltrasse findet bei der Anlandung binnendeichs bei Dornumergrode an der Muffe zwischen See- und Landkabel statt. Die Errichtung der Muffe im Anlandungsbereich ist Antragsgegenstand des Landkabelabschnitts. Auf der Seetrasse ergibt sich unmittelbar an der 12 sm-Grenze zwischen Küstenmeer (12 sm-Zone) und AWZ ein Abschnittsübergang aufgrund der unterschiedlichen Rechtsregime, die für die Deutsche AWZ und die 12 sm-Zone als unmittelbares Hoheitsgebiet der Bundesrepublik Deutschland zu berücksichtigen sind. Die nachfolgende Abbildung 6 zeigt die Abschnittsbildung des Vorhabens.

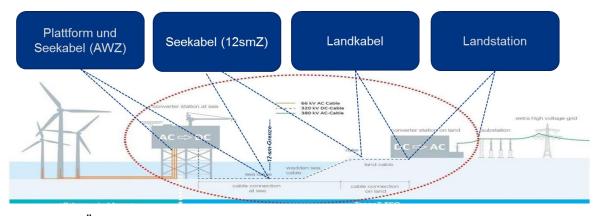



Abbildung 6: Übersicht der Abschnittsbildung für das Vorhaben LanWin1 (NOR-12-1)

Für die Genehmigung des gesamten Vorhabens sind verschiedene Zuständigkeiten und Zulassungsverfahren erforderlich.



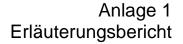
NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 19 von 85

Die Konverterplattform auf See sowie ein Teil der Gleichstromleitung (Seekabel AWZ) befinden sich in der deutschen AWZ und somit außerhalb des deutschen Staatsgebietes. Die Genehmigung dieser Anlagenteile erfolgt auf Grundlage des WindSeeG im Rahmen eines Planfeststellungsverfahrens (gem. §§ 44 und 45 WindSeeG). Zuständige Anhörungs- und Planfeststellungsbehörde ist das BSH.

Die Genehmigung der Konverterstation an Land (Landstation) erfolgt nach dem BimSchG bei dem staatlichen Gewerbeaufsichtsamt Oldenburg.


Die Genehmigung der Leitung im Küstenmeer (12 sm-Zone), an Land sowie der AC-Leitung von der Konverterstation zum Umspannwerk unterliegen der Planfeststellung in einem Verfahren nach § 43 Satz 1 Nummer 2 EnWG bei der nach Landesrecht zuständigen Behörde; dies ist in diesem Fall die "Niedersächsische Landesbehörde für Straßenbau und Verkehr" (NLStBV) in Hannover.

Wie in den Vorbemerkungen beschrieben, können linienförmige Vorhaben in Teilabschnitten verwirklicht werden. Im Falle der Seekabelabschnitte müssen sie dies sogar aufgrund der unterschiedlichen Rechtsregime. Auch die Bildung von weiteren Planungsabschnitten ist zulässig, wenn sie sich sachlich rechtfertigen lässt und ihrerseits das Ergebnis planerischer Abwägung ist. Hiervon soll im Hinblick auf den Teilabschnitt der Seekabeltrasse in der 12 sm-Zone (Niedersächsisches Küstenmeer) einerseits und den Abschnitt der Landtrasse bis nach Unterweser andererseits Gebrauch gemacht werden. Jene Abschnittsbildung drängt sich sachlich auf, da seeseitig nur wenige private und ganz andere öffentliche Belange durch das Vorhaben betroffen sind, als dies auf dem Teil der Landtrasse der Fall ist. Überdies sind unterschiedliche Fachbehörden zu beteiligen und Art und Weise der Kabelverlegung unterscheidet sich aufgrund anderer Umweltbedingungen ebenfalls deutlich.

Der vorliegende Erläuterungsbericht betrifft ausschließlich den Bereich der Planfeststellung nach EnWG für das Seekabel im Küstenmeer inklusive der Unterquerung der Insel Baltrum sowie des Landesschutzdeiches bei Dornumergrode bis zur Landkabel-Seekabelmuffe.

### 1.2.2. Teilabschnitt Seekabeltrasse im Küstenmeer inklusive Querung des Landesschutzdeich (Antragsgegenstand)

Die Seekabeltrasse im Küstenmeer verläuft zwischen dem Grenzkorridor N-III an der 12 sm-Grenze nördlich von Baltrum und der landseitig vom Landesschutzdeich bei Dornumergrode gelegenen Übergangsmuffe zwischen Land- und Seekabel. Die Übergangsmuffe markiert in der Zählweise der Trassenkilometer den Startpunkt (= Kilometerpunkt/KP 0) und die 12 sm-Grenze den Endpunkt (~ KP 36). In Anlage 4 Anhang 1 der Antragsunterlagen findet sich die Trassenpositionsliste (sog. "Route Position List"), anhand derer die Routenführung mittels über Koordinaten festgehaltener Zwischenpunkte räumlich festgelegt ist.





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 20 von 85

Zwischen der 12 sm-Grenze und der Übergangsmuffe ergibt sich folgender Verlauf:

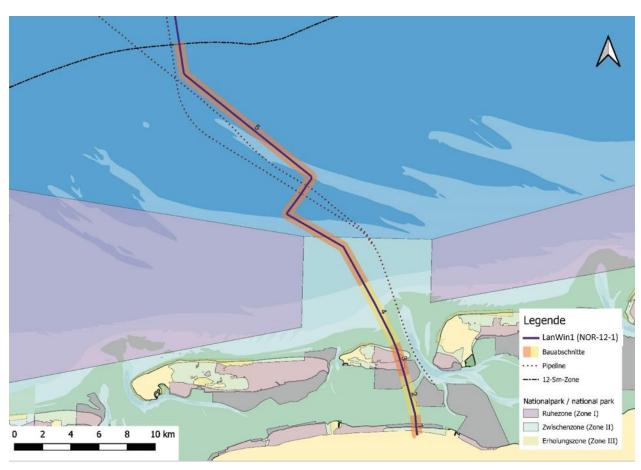



Abbildung 7: Trassenverlauf mit Bauabschnitten und Nationalparkzonen

Der Tabelle 2 sind die Längen der einzelnen Teilbereiche des Vorhabens zu entnehmen. Der auf den Planfeststellungsbereich im Küstenmeer entfallende Anteil der Seetrasse in Niedersachsen umfasst einen Abschnitt von ca. 36 km (inklusive der Anlandung im Bereich der Deichquerung). Die exakte Darstellung dieses Abschnittes ist der Anlage 4 (Lage- und Grunderwerbspläne und Koordinaten-Liste) zu entnehmen. Anlage 2 enthält zudem eine Übersichtskarte der Kabeltrasse im Küstenmeer (Antragsgegenstand) und des Gesamtvorhabens (nachrichtliche Darstellung).

Tabelle 2: Leitungslängen der Trassenabschnitte

| DC-Leitung LanWin1 (NOR-12-1) |          |                  |                              |  |          |              |              |    |           |
|-------------------------------|----------|------------------|------------------------------|--|----------|--------------|--------------|----|-----------|
| Planungs-                     | Seekabel |                  | Seekabel 12 sm-Zone          |  |          |              |              |    | Landkabel |
| abschnitt                     | AWZ      |                  |                              |  |          |              |              |    |           |
|                               |          |                  | Nationalpark Nds. Wattenmeer |  |          |              |              |    |           |
| Bau-<br>abschnitt             | Offs     | hore Nearshore   |                              |  | HDD      | Wattkabel    | Deichquerung |    |           |
| Bereich                       |          | itoral<br>asser) | Sublitoral<br>(Flachwasser)  |  | Insel    | Eulitoral La |              | nd |           |
|                               | ~ 130 km | ~ 17-25 km       | ~ 5-12 km                    |  | ~ 1,8 km | ~ 3 km       | ~ 1,3 km     |    | ~ 110 km  |
| Strecke                       | ~ 15 km  |                  |                              |  |          |              |              |    |           |
|                               |          | ~ 36 km          |                              |  |          |              |              |    |           |

In den Übersichts- und Detailkarten im Anhang der Anlagen 2 und 3.3.2 kann der Verlauf im Detail nachvollzogen werden.



### Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 21 von 85

Aus diesem Trassenverlauf ergeben sich Betroffenheiten in den Gemeinden Baltrum und Dornum im Landkreis Aurich. Personen- und Materialtransporte auf die Insel Baltrum sind über den Wasserweg vorgesehen. Das Anlandungsgrundstück sowie die temporäre Zufahrt befinden sich in der Gemeinde Dornum. Für die Antransporte zur landseitigen Baustellenfläche werden Kreisstraßen und sonstige Straßen genutzt.

Neben den üblichen Elementen sollen auch jeweils eine Rückspülleitung im Bereich Inselquerung und Anlandung sowie die Errichtung einer Dalbenreihe inklusive Zugangssteg im Bereich der Baustelleneinrichtungsfläche (BE-Fläche) "Baltrum-Süd" errichtet werden. Diese sollen nicht nur für das hier gegenständliche ONAS genutzt werden, sondern für alle ONAS im Baltrum-Korridor. Dementsprechend haben sie über die Bausaison eines einzelnen ONAS hinaus Bestand. Mehr Informationen zu den Baumaßnahmen können sowohl der Baubeschreibung HDD (Anlage 3.1), als auch Kapitel 6 des Erläuterungsberichtes entnommen werden.

An dieser Stelle sei klarstellend darauf hingewiesen, dass die eben genannte Errichtung der zwei Rückspülleitungen Baltrum und Dornumergrode sowie der Dalbenreihe inklusive Zugangssteg im Bereich Baltrum-Süd ebenfalls Bestandteil der Antragsunterlagen für die laufenden Planfeststellungsverfahren BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2) sind. Gleiches gilt auch für die übrigen von allen fünf ONAS genutzten Baumaßnahmen (Baustellenzufahrt binnendeichs, Laufsteg ins Watt vor Dornumergrode). Sämtliche bereits bewerteten und bilanzierten Flächen und Installationen werden in den umweltfachlichen Antragsunterlagen von LanWin1 (NOR-12-1) aufgrund der positiven Planungsprognose für die sich bereits im fortgeschrittenen Verfahren befindlichen Projekte BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2) als existent betrachtet und daher nicht erneut bilanziert (siehe Anlage 8.1). Dennoch werden diese Teilbaumaßnahmen im vorliegenden Antrag nachrichtlich beschrieben und dargestellt.

Aufgrund der Erhöhung der Ausbauziele der Energieerzeugung aus Offshore Wind ist auch der Zeitplan der ONAS gestaucht worden. Aus diesem Grund plant die Vorhabenträgerin, im Jahr 2024 auch die erste HDD im Anlandungsbereich für das Projekt NOR-12-1 zu erstellen. Diese soll mittels § 43j EnWG im Rahmen dieses Antrags mit beantragt werden. In Kapitel 1.3.5 wird auf die Anwendbarkeit von § 43j EnWG weiter eingegangen.

#### 1.3. Planrechtfertigung und Vorhabenbegründung

Eine planerische Entscheidung trägt ihre Rechtfertigung nicht schon in sich selbst, sondern ist im Hinblick auf die von ihr ausgehenden Einwirkungen auf Rechte Dritter rechtfertigungsbedürftig (BVerwGE 114, 364). Eine Planung ist dann gerechtfertigt, wenn für das beabsichtigte Vorhaben nach Maßgabe der vom einschlägigen Fachgesetz verfolgten Ziele einschließlich sonstiger gesetzlicher Entscheidungen ein Bedürfnis besteht und die Maßnahme unter diesem Blickwinkel, also objektiv, erforderlich ist. Das ist nicht erst bei Unausweichlichkeit des Vorhabens der Fall, sondern bereits dann, wenn es vernünftigerweise geboten ist (vgl. BVerwGE 128, 358).

Mit Unterzeichnung des Koalitionsvertrages von SPD, Bündnis 90/Die Grünen und FDP am 07.12.2021 ergeben sich neue Ausbauziele für erneuerbare Energien. Es soll der in § 1 EEG 2021 genannte Zielanteil erneuerbarer Energien am Bruttostromverbrauch von 65 % gemäß Koalitionsvertrag auf 80 % im Jahr 2030 angehoben werden. Ebenso sollen die in



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 22 von 85

§ 4 EEG 2021 genannten Ausbaupfade für die verschiedenen erneuerbaren Technologien weiter angehoben werden. Die neuen Ausbauziele für Offshore-Windenergie gehen dabei deutlich über die Ziele in der letzten Novelle des WindSeeG hinaus. Bis zum Jahr 2030 sollen die Kapazitäten für Offshore-Windenergie auf mindestens 30 GW im Jahr 2030, mindestens 40 GW im Jahr 2035 und mindestens 70 GW im Jahr 2045 gesteigert werden. Bund, Küstenländer und die für die Errichtung und den Betrieb der ONAS zuständigen ÜNB haben sich am 3. November 2022 im Rahmen der sog. Offshore-Realisierungsvereinbarung auf die Realisierung der neuen Ausbauziele verständigt. Diese Ziele treten mit der Novelle des WindSeeG am 01.01.2023 in Kraft.

Das Vorhaben LanWin1 (NOR-12-1) und der hier zur Planfeststellung anstehende Vorhabenteil der Seekabeltrasse (Genehmigungsgegenstand) gründen sich maßgeblich auf das EnWG in Verbindung mit dem WindSeeG, aus denen die energiewirtschaftliche Erforderlichkeit des Vorhabens erwächst. Aus den Gesetzesrahmen von EnWG und WindSeeG leiten sich zwei zentrale Planungsinstrumente ab, die für den Ausbau der Windenergie auf See und die Übertragung der erzeugten Energie zu den Verbrauchern an Land rahmensetzend sind und die dazu erforderlichen Vorhaben (hier: LanWin1) energierechtlich vordefinieren und Festlegungen zu deren Umsetzung treffen:

- Flächenentwicklungsplan für die deutsche Nord- und Ostsee (FEP) gem. § 4 WindSeeG;
- Netzentwicklungsplan (NEP) gem. §§ 12b und 12c EnWG.

In Kapitel 1.3.1 werden die grundlegenden inhaltlichen Aussagen der Planungsinstrumente (FEP und NEP) zum energiewirtschaftlichen Erfordernis und zu den energierechtlichen Festlegungen für LanWin1 (NOR-12-1) dargelegt. Für eine weitere Vertiefung wird auf die entsprechenden auch öffentlich zugänglichen Dokumente verwiesen:

- <u>www.bsh.de</u> ==> Flächenentwicklungsplan 2023 für die deutsche Nord- und Ostsee vom 20. Januar 2023
- <u>www.netzentwicklungsplan.de</u> sowie <u>www.netzausbau.de</u> ==> Netzentwicklungsplan Strom NEP 2023-2037/2045 vom 1. März 2024

#### 1.3.1. Energiewirtschaftliches Erfordernis und energierechtliche Festlegungen

Das Vorhaben LanWin1 (NOR-12-1) dient im Kern den Zwecken des § 1 EnWG, namentlich einer möglichst sicheren, effizienten und umweltverträglichen leitungsgebundenen Versorgung der Allgemeinheit mit Elektrizität, die zunehmend auf erneuerbaren Energien beruht und ist hierfür erforderlich. Dies gilt umso mehr nach dem beschlossenen Ausstieg aus der Kernkraft, dem sog. Gesetzespaket zur Energiewende, das Bestandteil des Energie- und Klimakonzeptes von Bund und Ländern ist und den Ausbau der Energieerzeugung aus Offshore-Wind von 30 statt 20 GW bis zum Jahr 2030 vorsieht.

Die zur Planfeststellung beantragte Netzanbindungsleitung dient damit der Netzeinspeisung des auf der Nordsee erzeugten Windstroms und dessen Transport zu den Verbrauchern. Damit trägt sie unmittelbar zur Nutzung und zum Ausbau der Windenergie als Ersatz für fossile Brennstoffe bei und leistet einen wichtigen Beitrag zum Klimaschutz und zur Erreichung der im Rahmen der Energiewende gesetzten Ziele.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Dieser Zweck ist im WindSeeG gesetzlich verankert; § 1 WindSeeG führt dies aus:

- (1) Zweck dieses Gesetzes ist es, insbesondere im Interesse des Klima- und Umweltschutzes die Nutzung der Windenergie auf See insbesondere unter Berücksichtigung des Naturschutzes, der Schifffahrt sowie der Offshore-Anbindungsleitungen auszubauen.
- (2) Ziel dieses Gesetzes ist es, die installierte Leistung von Windenergieanlagen auf See, die an das Netz angeschlossen werden, auf insgesamt mindestens 30 Gigawatt bis zum Jahr 2030, auf insgesamt mindestens 40 Gigawatt bis zum Jahr 2035 und auf insgesamt mindestens 70 Gigawatt bis zum Jahr 2045 zu steigern. [...]"

Das WindSeeG aus dem Jahr 2017 markierte damit einen Systemwechsel im Bereich der Entwicklung und Förderung der Windenergie auf See. Auf der Grundlage des WindSeeG nimmt das BSH die Aufgabe der zentralen Entwicklung und im Auftrag der BNetzA die Voruntersuchung von Flächen für die Errichtung und den Betrieb von Windenergieanlagen auf See wahr.

Als zentrales Steuerungsinstrument dient dabei der FEP, der auf Grundlage des § 4 WindSeeG durch das BSH im Einvernehmen mit der BNetzA und in Abstimmung mit dem Bundesamt für Naturschutz (BfN), der Generaldirektion Wasserstraßen und Schifffahrt (GDWS) und den Küstenländern (Niedersachsen, Schleswig-Holstein und Mecklenburg-Vorpommern) aufgestellt wird und damit dem o.g. Ziel dient, sowohl den Ausbau der Windenergieanlagen auf See als auch den Ausbau der für die Übertragung des erzeugten Stroms erforderlichen ONAS aufeinander abzustimmen, um einen Gleichlauf der jeweils erforderlichen Planungen, Zulassungen, Errichtungen und Inbetriebnahmen zu erreichen (vgl. § 1 Absatz 2 WindSeeG oben).

Gegenstand des FEP ist die räumliche und zeitliche Planung der Windenergie-Gebiete und Stromleitungen in der Nord- und Ostsee. Dabei werden unter anderem Flächen und die darin zu installierende Leistung festgelegt. Zusätzlich wird bestimmt, in welchem Kalenderjahr die geplanten Windenergieanlagen auf See und die entsprechenden Offshore-Netzanbindungssysteme in Betrieb gehen sollen. Überdies gibt der FEP standardisierte Technikgrundsätze und Planungsgrundsätze zur Umsetzung der ONAS vor.

Räumliche Bezugspunkte, die im FEP festgelegt werden, sind die Standorte der Konverterplattformen in der AWZ, die Orte, an denen die ONAS die Grenze zwischen der AWZ und dem Küstenmeer überschreiten (der sog. Grenzkorridor) sowie der Trassenkorridor für ONAS von Konverterplattform und Grenzkorridor. Der landseitige NVP wird im NEP festgelegt.

Der Bedarf an ONAS ergibt sich im hiesigen Fall aus dem gesetzlichen Bedarfsermittlungssystem der §§ 12a ff. EnWG, bestehend aus Szenariorahmen und NEP. Der Szenariorahmen dient dabei als Grundlage für den NEP. Dieser enthält die ONAS, die für einen sicheren und zuverlässigen Betrieb des Höchstspannungsstromnetzes erforderlich sind. Der NEP wird basierend auf den §§ 12b und 12c EnWG durch die ÜNB entwickelt und durch die BNetzA bestätigt und damit rechtswirksam verbindlich.

Der FEP und der NEP bilden ein zusammenhängendes Planwerk. Der aktuelle NEP 2023-2037/2045 vom 1. März 2024 NEP (2021) beinhaltet die Planung der ONAS, die bis zum Jahr

Seite 23 von 85



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 24 von 85

**Abschnitt Seetrasse** 

2037 bzw. 2045 umgesetzt werden sollen. Dabei legt der NEP die Vorgaben des am 20.01.2023 veröffentlichten FEP 2023 zugrunde. Für das ONAS NOR-12-1 ist der Übergang ins niedersächsische Küstenmeer via Grenzkorridor N-III und der NVP Unterweser vorgesehen.

Nachfolgende Abbildungen sind dem Kartenteil des FEP 2023 entnommen. Hier sind die zentralen räumlichen Bezugspunkte nachzuvollziehen, z. B. die Windpark-Gebiete (N-1 bis N-13) und die Grenzkorridore zwischen AWZ und Küstenmeer (I bis V). Ein vergrößerter Ausschnitt zu den Bezugsgrößen für LanWin1 (Gebiet N-12 sowie Grenzkorridor N-III) findet sich auf der nächsten Seite sowie online (siehe BSH 2023 im Literaturverzeichnis).

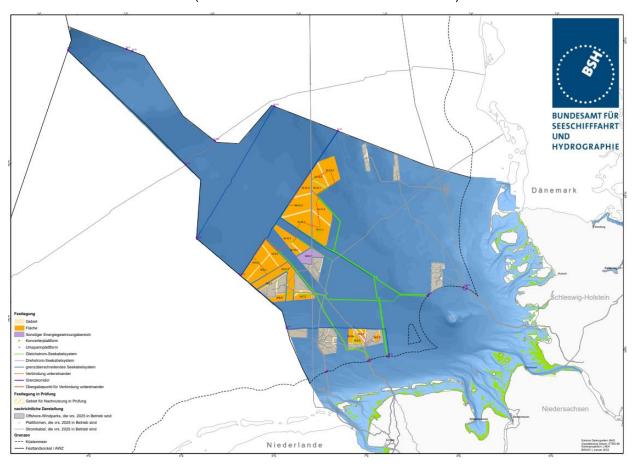
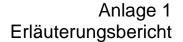




Abbildung 8: FEP 2023 Kartenteil (Quelle BSH 2023)





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 25 von 85



Abbildung 9: Auszug FEP 2023 Kartenteil (Quelle BSH 2023). LanWin1-Bezugspunkte: Fläche N-12.1 und Grenzkorridor N-III mit grauen Pfeilen gekennzeichnet.

Der FEP 2023 legt als standardisierten Technikgrundsatz für die Übertragungskapazität bei ab Zone 3 vorgesehenen ONAS eine Standardübertragungsleistung von 2000 MW fest. In Kapitel 5.9 des FEP 2023 wird darüber hinaus als standardisierter Technikgrundsatz festgesetzt, dass die Netzanbindungsleitung als sog. 66-kV-Direktanbindungskonzept ausgeführt wird, bei dem die Leitungen zur Verbindung der Konverterplattform auf See mit den Offshore-Windenergieanlagen auf Basis der Drehstromtechnologie mit einer Spannung von 66 kV ausgeführt werden ohne eine 155 kV- bzw. 220 kV-Zwischenspannungsebene zwischen Umspannwerkplattform (im Windpark) und Konverterplattform der Netzanbindungsleitung.

Außerdem trifft der FEP 2023 wörtlich folgende Festsetzungen hinsichtlich des Trassenverlaufs in Kapitel 2.1: "Die bis einschließlich 2031 festgelegten Anbindungssysteme mit Grenzkorridor N-III NOR-9-2, NOR-9-3, NOR-12-1, NOR-11-2 und NOR-13-1 werden aus diesem Grund räumlich über die Insel Baltrum geplant."



## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 26 von 85

### 1.3.2. Umsetzungsauftrag für die Vorhabenträgerin

Aus den zuvor dargelegten Erwägungen ergibt sich das Erfordernis, LanWin1 (NOR-12-1) in dem beschriebenen Umfang und Rahmenbedingungen umzusetzen.

Nach § 17d Absatz 1 Satz 1 und 2 EnWG haben Betreiber von Übertragungsnetzen, in deren Regelzone der Netzanschluss von Windenergieanlagen auf See i.S.v. § 3 Nummer 7 WindSeeG erfolgen soll (anbindungsverpflichteter ÜNB), die Leitungen seit dem 1. Januar 2019 entsprechend den Vorgaben des Netzentwicklungsplans und des Flächenentwicklungsplans gemäß § 5 des WindSeeG zu errichten und zu betreiben:

- "(1) Betreiber von Übertragungsnetzen, in deren Regelzone die Netzanbindung von (anbindungsverpflichteter Windenergieanlagen auf See erfolgen soll Übertragungsnetzbetreiber), haben die Offshore-Anbindungsleitungen entsprechend den Vorgaben des Offshore-Netzentwicklungsplans und ab dem 1. Januar 2019 entsprechend Vorgaben des Netzentwicklungsplans des den Flächenentwicklungsplans gemäß § 5 des Windenergie-auf-See-Gesetzes zu errichten und zu betreiben.
- (2) Sie haben mit der Umsetzung der Netzanbindungen von Windenergieanlagen auf See entsprechend den Vorgaben des Offshore-Netzentwicklungsplans und ab dem 1. Januar 2019 entsprechend den Vorgaben des Netzentwicklungsplans und des Flächenentwicklungsplans gemäß § 5 des Windenergie-auf-See-Gesetzes zu beginnen und die Errichtung der Netzanbindungen von Windenergieanlagen auf See zügig voranzutreiben. 3Eine Offshore-Anbindungsleitung nach Satz 1 ist ab dem Zeitpunkt der Fertigstellung ein Teil des Energieversorgungsnetzes."

Dies bildet die Grundlage und Planrechtfertigung für dieses Vorhaben und für die Antragsstellung auf Planfeststellung nach § 43 Abatz 1 Nummer 2 EnWG für den vorgelegten Abschnitt.

#### 1.3.3. Verträglichkeit und Antrag auf Ausnahme gemäß § 34 BNatschG

Gemäß § 34 Absatz 1 BNatschG sind Projekte vor ihrer Zulassung oder Durchführung auf ihre Verträglichkeit mit den Erhaltungszielen eines Natura 2000-Gebietes (hier: FFH-Gebiet "Nationalpark Niedersächsisches Wattenmeer" (DE 2306-401) sowie VS-Gebiet "Niedersächsisches Wattenmeer und angrenzendes Küstenmeer" (DE 2210-401)) zu überprüfen, wenn sie einzeln oder im Zusammenwirken mit anderen Projekten geeignet sind, das Gebiet erheblich zu beeinträchtigen.

In Summation mit den anderen über Baltrum verlaufenden Projekten kann eine erhebliche Beeinträchtigung und entsprechend eine Unverträglichkeit gem. § 34 BNatschG für die oben genannten Gebiete nicht sicher ausgeschlossen werden.

In der Natura 2000 Voruntersuchung (Anlage 10.3) und insbesondere in dessen Anhang zur Summation wird dieser Sachverhalt detailliert aufgearbeitet.

Abweichend von § 34 Absatz 2 BNatschG kann nach § 34 Absatz 3 BNatschG ein Projekt trotz erheblichen Beeinträchtigungen eines Gebiets in seinen für die Erhaltungsziele oder den Schutzzweck maßgeblichen Bestandteilen dennoch zugelassen werden, wenn es



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 27 von 85

2. zumutbare Alternativen, den mit dem Projekt verfolgten Zweck an anderer Stelle ohne oder mit geringeren Beeinträchtigungen zu erreichen, nicht gegeben sind."

Im Folgenden soll die Erfüllung der beiden genannten Bedingungen dargelegt werden.

Zu 1.: Offshore-Anbindungsleitungen liegen gemäß Novellierung vom 01.01.2023 des WindSeeG § 1 Absatz 3 im überragenden öffentlichen Interesse und dienen der öffentlichen Sicherheit.

Dies stellt eine Aufwertung im Vergleich zur vorherigen Einordnung ("im überwiegenden öffentlichen Interesse") dar. Diese Einordnung ist nun im Rahmen der behördlichen Abwägung mit anderen Rechtsgütern zu bewerten und zu berücksichtigen. In der Begründung zum Gesetzesentwurf der Bundesregierung eines Zweiten Gesetzes zur Änderung des WindSeeG¹ heißt es wie folgt:

"[...] Da die Anlagen gleichzeitig zur Erreichung der energiepolitischen Ziele dieses Gesetzes sowie der Zielsetzung der Bundesregierung zum Klimaschutz und den Zielsetzungen der Europäischen Union im Energie- und Klimabereich beitragen, liegt ihre Errichtung aber gleichzeitig in einem übergeordneten öffentlichen Interesse. Der Europäische Gerichtshof (EuGH) hat dementsprechend festgestellt, dass "die Förderung Energieversorgung beitragen und die Erreichung der Zielvorgaben des Kyoto-Protokolls zum Rahmenübereinkommen der Vereinten Nationen über Klimaänderungen beschleunigen kann".5Staatliche Behörden müssen dieses überragende öffentliche Interesse bei der Abwägung mit anderen Rechtsgütern berücksichtigen. Dies betrifft jede einzelne Windenergieanlage auf See und jede Offshore-Anbindungsleitung. [...]". Dementsprechend wird die erste Bedingung § 34 BNatschG Absatz 3 erfüllt.

Zu 2.: Wie in Kapitel 4.2 und Anlage 11.8 erläutert wird, wurde bereits während der Planungsphase eine alternative technische Lösung zur Querung der Insel Baltrum entworfen, naturschutzfachlich begutachtet und mit den Fachbehörden diskutiert. Bei der vorgeschlagenen Alternative wird die Unterquerung der Insel Baltrum mittels HDD durch eine (halb)offenen Verlegung über den Inselosten ersetzt. Dies bedeutet, dass das Kabelbündel mithilfe eines kettenbetriebenen Verlegegerätes mittels Vibration, Spülung oder Fräse in den Boden auf die erforderliche Tiefe gebracht wird.

Allerdings ist bereits im naturschutzfachlichen Gutachten festgestellt worden, dass prioritär natürliche Lebensraumtypen (Binsenquecken-Vordünen) dauerhaft betroffen wären, anders als bei der HDD-Variante. Dieser Umstand dürfte im Zusammenhang mit den Belangen von Natura 2000 eine gewichtige Bedeutung erlangen, denn bereits die dauerhafte Schädigung von Lebensraumtypen im FFH-Gebiet kann nach dem Fachkonventionsvorschlag des Bundesamtes für Naturschutz (sog. Lamprecht & Trautner-Leitfaden aus 2007) als erhebliche Beeinträchtigung des Schutzzwecks, der Erhaltungsziele und der wertbestimmenden Bestandteile bewertet werden. Dieses gilt vorhabenbedingt im Einzelnen für jedes System und ggf. erst recht im Zusammenwirken mehrerer Systeme im Baltrum-Korridor, wenn sich dauerhafte Auswirkungen

<sup>&</sup>lt;sup>1</sup> https://www.bmwk.de/Redaktion/DE/Downloads/Energie/04\_novelle\_windSeeG\_kabinettfassung.pdf?\_\_blob=publicationFile&v=8



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 28 von 85

#### summieren.

Projekt/Vorhaben:

Dementsprechend ist die technische Alternative zum HDD-Verfahren im Inselbereich bereits im Hinblick des Biotopschutzes bzw. der betroffenen Lebensraumtypen als schlechter zu bewerten und entsprechend nicht weiter zu betrachten. Der Auffassung folgte auch die zuständige Fachbehörde im Abstimmungsgespräch vom 05. April 2021.

Da nunmehr beide Bedingungen gemäß § 34 Absatz 3 BNatschG erfüllt sind, soll an dieser Stelle eine Ausnahme von § 34 Absatz 2 BNatschG im Sinne von § 34 Absatz 3 BNatschG beantragt werden.

Darüber hinaus werden im Rahmen dieses Planfeststellungsantrages entsprechende Kohärenzsicherungsmaßnahmen gemäß § 34 Absatz 5 BNatschG in Anlage 8 beschrieben.

### 1.3.4. Leerrohrmitnahme durch NOR-9-2 (BalWin3) gem. § 43j EnWG

Bis zum Jahr 2031 sollen insgesamt fünf ONAS über die Insel Baltrum planfestgestellt, errichtet und in Betrieb genommen werden (siehe Tabelle 1). Für alle fünf ONAS müssen somit nach Erhalt der Planfeststellungsbeschlüsse (2024 bzw. 2025) die Bauarbeiten in allen fünf Bauabschnitten innerhalb weniger Jahre durchgeführt werden. Aus umweltfachlichen, küstenschutzfachlichen und wetterbedingten/technischen Gründen können in diesen Jahren jeweils nur die Sommermonate für die Baumaßnahmen genutzt werden.

Bei der zeitlichen Planung der verschiedenen Baumaßnahmen gilt es zu beachten, dass die Bauarbeiten von verschiedenen ONAS im gleichen Bauabschnitt nicht zeitgleich stattfinden können. Überdies können auch bauabschnittsübergreifend verschiedene Baumaßnahmen teilweise nicht zeitgleich durchgeführt werden. So schließt sich etwa eine komplett zeitgleiche Realisierung der Wattkabelverlegung und der HDD im Bereich der Anlandung aus diversen logistischen Gründen aus.

Um die Abfolge der Inbetriebnahmejahre einhalten zu können, müssen die einzelnen Bauabschnitte im Bereich des Küstenmeeres eng getaktet und projektübergreifend abgestimmt werden. Somit ergibt sich <u>projektübergreifend</u> ein enges Korsett aus aufeinanderfolgenden und sich möglichst nicht gegenseitig beeinträchtigenden Bauabschnitten.

Abbildung 10 zeigt die fünf in Dornum anlandenden ONAS und die hierfür insgesamt 16 erforderlich HDD-Bohrungen (3 Kabelschutzrohre je Vorhaben + 1 Rückspülleitung). Diese 16 HDD-Bohrungen müssen auf zwei Jahre bzw. zwei Bauzeitenfenster (2024 und 2028) verteilt werden.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 29 von 85

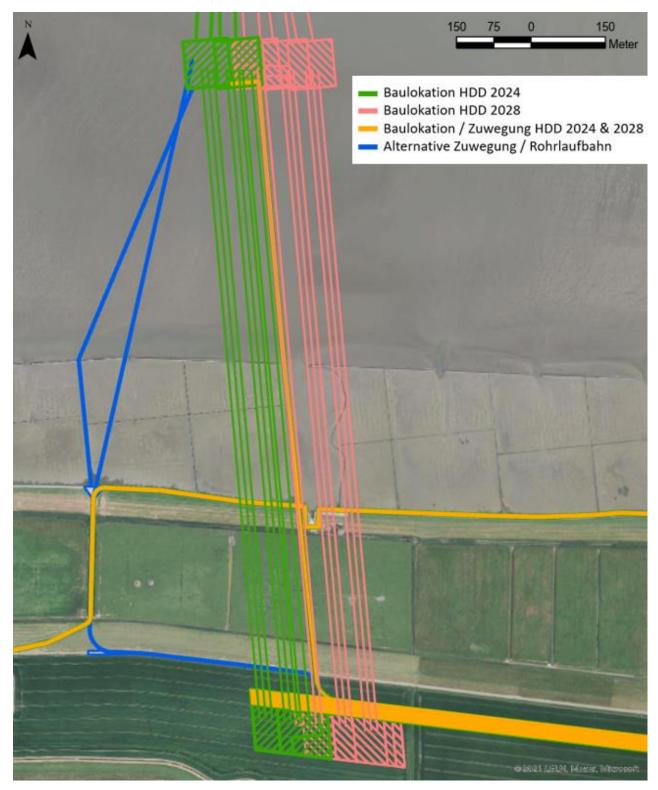



Abbildung 10: HDD Baulokationen bei Dornumergrode nach den jeweiligen Baujahren

Jeweils acht Bohrungen können voraussichtlich im geplanten Bauzeitenfenster Juni-September hergestellt werden. Erst für eine neunte Bohrung wäre eine Aufweitung dieses Bauzeitenfensters zwingend erforderlich.

Aus Sicht der Vorhabenträgerin scheint es daher vorteilhaft, im Bereich der Anlandung im ersten



### Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 30 von 85

Baujahr 2024 nicht nur die sechs Leerrohre zzgl. Rückspülleitung der zuerst beantragten ONAS NOR-9-3 (BalWin4) und NOR-9-2 (BalWin3), sondern auch die erste HDD-Bohrung des dritten ONAS im Baltrum-Korridor zu errichten. Bei diesem dritten ONAS handelt es sich um den vorliegenden Antragsgegenstand LanWin1 (NOR-12-1).

Das Vorziehen der ersten HDD-Bohrung von LanWin1 (NOR-12-1) hat zur Folge, dass sowohl in 2024 als auch in 2028 jeweils acht HDD-Bohrungen zu realisieren sind, statt sieben in 2024 und neun in 2028. Somit ermöglicht die geplante Leerrohrmitnahme voraussichtlich das Einhalten des üblichen Bauzeitenfensters und reduziert dadurch die Beeinträchtigungen naturschutz- und küstenschutzfachlicher Belange.

Zum Zeitpunkt des ersten für die HDD-Bohrungen der Anlandung vorgesehenen Bauzeitenfensters (Sommer 2024) wird das Planfeststellungsverfahren für LanWin1 (NOR-12-1) noch nicht abgeschlossen sein. Die Planfeststellungsbeschlüsse der ersten zwei Baltrum-ONAS BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2) sollten zu diesem Zeitpunkt jedoch bereits vorliegen. Daher wird die erste der insgesamt drei HDD-Bohrungen des hier beantragten ONAS LanWin1 (NOR-12-1) bereits im Rahmen des Planfeststellungsverfahrens des benachbarten ONAS BalWin3 (NOR-9-2) mitbeantragt.

Dieses Vorgehen ermöglicht das EnWG durch die Anwendung von § 43j EnWG. Für die Verlegung der Leerrohre des ONAS LanWin1 (Leerrohr im Sinne des § 43 Absatz 2 Satz 1 Nummer 6 EnWG) im Jahr 2024 sowie die spätere Durchführung der Stromleitung und deren anschließender Betrieb soll das Planfeststellungsverfahren NOR-9-2 (BalWin3) als Trägerverfahren dienen. Im Folgenden soll die Anwendbarkeit § 43j EnWG erörtert werden.

BalWin3 (NOR-9-2) ist ein Vorhaben im Sinne des § 43 Absatz 1 Nummer 2, denn es stellt eine Höchstspannungsleitung dar, die zur Netzanbindung von Windenergieanlagen auf See im Sinne des § 3 Nummer 49 EEG dient. Gleiches gilt für das ONAS LanWin1 (NOR-12-1), für das die Herstellung der ersten HDD beantragt werden soll.

§ 43j Satz 1 Nummer 1 EnWG setzt ferner voraus, dass die Leerrohre im räumlichen und zeitlichen Zusammenhang mit der Baumaßnahme eines Erdkabels verlegt werden. Aus dem Übersichtsplan in Abbildung 10 wird ersichtlich, dass sich das zusätzlich zu errichtende Leerrohr in unmittelbarer Nähe und parallel zu den anderen im Jahr 2024 zu errichtenden HDDs befindet. Auch zeitlich sind sämtliche Baumaßnahmen in diesem Bereich aufeinander abgestimmt: Während in 2024 und 2028 die HDDs sämtlicher ONAS im Bereich der Anlandung gebaut werden sollen, sind die Wattkabelverlegungen und entsprechend die Kabeleinzüge für 2026, 2027, 2029 und 2030 geplant. Aus diesen Gründen ist Satz 1 Nummer 1 erfüllt.

Darüber hinaus setzt § 43j Satz 1 Nummer 2 EnWG eine Prognoseentscheidung der zuständigen Behörde voraus, wonach von der Nutzung der Leerrohre für die Durchführung einer Stromleitung binnen 15 Jahren nach Planfeststellung ausgegangen werden kann. Auch dies liegt aus mehrerlei Gründen nahe: Wenn man davon ausgeht, dass in 2024 der Planfeststellungsbeschluss für das ONAS NOR-9-2 (BalWin3) erteilt wird, müsste spätestens in 2039 die Stromleitung durch das zusätzliche Leerrohr verlegt sein. Aus Sicht der Vorhabenträgerin ist dies bereits 2029 der Fall, spätestens jedoch 2030, da für dieses Jahr gemäß FEP 2023 die Inbetriebnahme des



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 31 von 85

**Abschnitt Seetrasse** 

dazugehörigen ONAS LanWin1 (NOR-12-1) festgelegt ist. Dementsprechend ist bereits durch die Fortschreibung des FEP eine hohe Wahrscheinlichkeit gegeben, dass weit vor 2039 das Leerrohr genutzt wird. Ferner sieht die die Novelle des WindSeeG (beschlossen am 20. Juli 2022, Inkrafttreten am 01.01.2023) eine Erhöhung der installierten Leistung von Windenergieanlagen auf See in 2030 von 20 GW auf 30 GW vor.

Sollte es zu einem aus heutiger Sicht unwahrscheinlichen Fall kommen, dass die Ausbauziele wieder reduziert werden würden und bei 20 GW in 2030 und 40 GW in 2040 blieben, kann dennoch davon ausgegangen werden, dass das Leerrohr bis 2039 genutzt wird. Die Vorhabenträgerin ist im Rahmen des Raumordnungsverfahrens "Seetrassen 2030" bereits zu der Auffassung gelangt, dass die Verlegung von fünf Systemen über Baltrum technisch machbar Gemäß Kapitel 9.2 der landesplanerischen Feststellung Landesplanungsbehörde (ArL WE) zu der vorläufigen Einschätzung, dass die Verlegung von mehr als zwei Systemen über Baltrum und damit die Ausschöpfung der in diesem Korridor bestehenden technische Kapazitäten der Kabelverlegung im Vergleich zu anderen räumlichen Alternativen die raum- und umweltverträglichste Lösung erscheint. Untermauert wurde dies durch das ArL Weser-Ems, indem die Anzeige der Vorhabenträgerin hinsichtlich eines Raumordnungsverzichtes (Schreiben vom 01.11.2022) für die übrigen drei ONAS im Baltrum-Korridor durch selbige geprüft und bestätigt wurde (Schreiben vom 30.11.2022).

Schließlich wird die Frist gem. § 43c Nummer 1 EnWG gewahrt (siehe vorheriger Absatz) sowie die im Planfeststellungsverfahren zugrunde gelegten Merkmale, wie etwa Lage und technische Ausführung, nicht geändert.

Gegenstand des Trägerverfahrens und des dazu gehörigen Planfeststellungsbeschlusses sind die Verlegung der Leerrohre, die spätere Durchführung der Stromleitung und deren anschließender Betrieb. Sollte der unwahrscheinliche Fall eintreten, dass das Trägervorhaben nicht genehmigt wird, dann wird die erste HDD-Bohrung mit dem vorliegenden Antrag vorsorglich mitbeantragt. Hierdurch soll sichergestellt werden, dass LanWin1 (NOR-12-1) in jedem Fall umgesetzt werden kann. Daher wird auch im Rahmen dieses Antrags der Bau der ersten HDD-Bohrung in den Unterlagen dargestellt. Sollte die Errichtung und der Betrieb der ersten HDD des ONAS LanWin1 im Rahmen des Trägerverfahrens i.S.d. 43j EnWG planfestgestellt werden, dann entfällt dieser Teil des vorliegenden Antrags und lediglich die zweite und dritte HDD-Bohrung der Anlandung werden beantragt. Da die Kabelschutzrohre nicht bilanziert werden müssen, hat dies auf die Bilanzierung keine Auswirkungen.

#### 1.4. Verfahren

Das Planfeststellungsverfahren nach § 43 Absatz 1 Satz 1 Nummer 2 EnWG unterliegt den besonderen Verfahrensvorschriften der §§ 43a ff. EnWG in Verbindung mit den Regelungen der §§ 73 ff. VwVfG.

Bei der Planfeststellung sind die von dem Vorhaben berührten öffentlichen und privaten Belange im Rahmen der Abwägung zu berücksichtigen (§ 43 Absatz 3 EnWG). Soweit eine abschließende Entscheidung noch nicht möglich ist, ist diese im Planfeststellungsbeschluss vorzubehalten. Dem Träger des Vorhabens ist dabei aufzugeben, noch fehlende oder von der Planfeststellungsbehörde bestimmte Unterlagen rechtzeitig vorzulegen (§ 74 Absatz 3 VwVfG).



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 32 von 85

Demnach kann die Planfeststellungsbehörde die Lösung eines Problems einem ergänzenden Planfeststellungsbeschluss vorbehalten, wenn eine abschließende Entscheidung im Zeitpunkt der Planfeststellung nicht möglich, aber hinreichend gewährleistet ist, dass sich im Wege der Planergänzung der Konflikt entschärfen und ein Planzustand schaffen lässt, der den gesetzlichen Anforderungen gerecht wird.

Dies ist nur dann nicht möglich, wenn sich die Entscheidung ohne die vorbehaltene Teilregelung als ein zur Verwirklichung des mit dem Vorhaben verfolgten Ziels untauglicher Planungstorso erweist. Für einen zulässigen Vorbehalt muss die Planfeststellungsbehörde also ohne Abwägungsfehler ausschließen können, dass eine Lösung des offen gehaltenen Problems durch die bereits getroffenen Feststellungen in Frage gestellt wird. So können etwa technische Details ohne weiteres auch noch nach Planfeststellung eingeführt werden, wenn dies etwa im Hinblick auf die konkrete Angebotslage bei Baubeginn notwendig ist.

Im Übrigen können linienförmige Vorhaben in Teilabschnitten verwirklicht werden, wenn sich dies sachlich rechtfertigen lässt und das Ergebnis planerischer Abwägung ist. Hiervon soll im Rahmen der Unterteilung in vier Teilabschnitte (Seetrasse in der AWZ, Seetrasse in der 12 sm-Zone, Landtrasse und Konverterstation an Land) Gebrauch gemacht werden; der vorliegende Antrag bezieht sich ausschließlich auf den Teilabschnitt 12 sm-Zone. Die rechtlichen Voraussetzungen für eine solche Abschnittsbildung liegen hier im konkreten Fall vor (siehe Kapitel 1.6).

#### 1.5. Zuständigkeiten

#### 1.5.1. Vorhabenträgerin

Trägerin des Vorhabens ist die

TenneT Offshore GmbH Bernecker Straße 70 95448 Bayreuth

#### 1.5.2. Planfeststellungsbehörde

Örtlich und sachlich zuständige Anhörungs- und Planfeststellungsbehörde ist die

Nds. Landesbehörde für Straßenbau und Verkehr Dezernat 41 – Planfeststellung Göttinger Chaussee 76 A 30453 Hannover

### 1.6. Abschnittsbildung

Linienförmige Vorhaben können in Teilabschnitten verwirklicht werden. Die Bildung von Planungsabschnitten ist zulässig, wenn sie sich sachlich rechtfertigen lässt und ihrerseits das Ergebnis planerischer Abwägung ist. Für Infrastrukturanlagen, die wie die hier



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 33 von 85

**Abschnitt Seetrasse** 

planfestzustellende Anschlussleitung durch Weitmaschigkeit des entsprechenden Infrastrukturanlagennetzes gekennzeichnet sind, bedarf es auch nicht des – wie beispielweise beim Straßenbau erforderlichen – Kriteriums der eigenständigen Funktion des Abschnitts.

Seeseitig ist das Vorhaben aufgrund der zwei unterschiedlichen Rechtsgrundlagen für die erforderlichen Planfeststellungen für die Vorhabenteile in der AWZ (§ 45 WindSeeG) und in der Bundesrepublik (§ 43 EnWG) ohnehin bereits in Abschnitte unterteilt. Die sachliche Erforderlichkeit stellt sich hier bereits aus der rechtlichen Erforderlichkeit ein.

Im Übrigen ist auch die Bildung von weiteren Planungsabschnitten zulässig, wenn sie sachlich gerechtfertigt und planerisch abgewogen ist. Hiervon soll im Hinblick auf den Teilabschnitt der Seekabeltrasse in der 12-sm-Zone (Niedersächsisches Küstenmeer) einerseits und den Abschnitt der Landtrasse bis nach Unterweser andererseits Gebrauch gemacht werden.

Insgesamt ergeben sich für das Gesamtvorhaben LanWin1 (NOR-12-1) damit die folgenden in Tabelle 3 aufgeführten Genehmigungsabschnitte:

Tabelle 3: Genehmigungsabschnitte des Gesamtvorhabens LanWin1 (NOR-12-1).

| Genehmigungsabschnitt                                                | Länge<br>[km] | Zuständige<br>Genehmigungsbehörde                                  |
|----------------------------------------------------------------------|---------------|--------------------------------------------------------------------|
| Konverterplattform bis 12 sm-Grenze ("Seekabel AWZ)                  | ca. 130       | Bundesamt für Seeschifffahrt und Hydrographie (BSH)                |
| 12 sm-Grenze bis Anlandungspunkt Dornumergrode (Seekabel Küstenmeer) | ca. 36        | Niedersächsische Landesbehörde für Straßenbau und Verkehr (NLStBV) |
| Anlandungspunkt Dornumergrode bis Konverter (Landkabel DC-Leitung)   | ca. 110       | Niedersächsische Landesbehörde für Straßenbau und Verkehr (NLStBV) |
| Konverterstation                                                     | -             | Gewerbeaufsichtsamt Oldenburg                                      |
| Konverter bis Unterweser (Landkabel AC-Anbindung)                    | ca. 2         | Niedersächsische Landesbehörde für Straßenbau und Verkehr (NLStBV) |

Die beiden Anträge auf Planfeststellung nach EnWG (Seetrasse im Küstenmeer und Landtrasse) werden in Anbetracht dieser Abschnittsbildung zeitversetzt eingereicht.

Mit den vorliegenden Unterlagen beantragt die Vorhabenträgerin die Planfeststellung für den Genehmigungsabschnitt Küstenmeer, der vom Schnittpunkt der Trasse mit der 12 sm-Grenze im Norden bis zum Anlandungspunkt Dornumergrode im Süden reicht.

#### 1.6.1. Rechtliche Zulässigkeit der Abschnittsbildung

Die Zulässigkeit des Unterteilens liniengebundener Vorhaben in Planungs- und somit auch Genehmigungsabschnitte ist grundsätzlich anerkannt. Ihr liegt die Erwägung zugrunde, dass angesichts vielfältiger Schwierigkeiten, die mit einer detaillierten Planung verbunden sind, die Planfeststellungsbehörde ein planerisches Gesamtkonzept im Sinne der Handhabbarkeit häufig nur in Teilabschnitten verwirklichen kann. Grundsätzlich besteht daher keine Verpflichtung, über die Zulassung eines Vorhabens insgesamt, vollständig und abschließend in einem einzigen Bescheid zu entscheiden (vgl. BVerwG, Urt. v. 15.12.2016 – 4 A 4.15, Rn. 26). Auch ein durch Verwaltungsgrenzen oder verfahrensrechtlich bedingter Wechsel der behördlichen Zuständigkeit



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 34 von 85

für die Planfeststellung legt die Abschnittsbildung nahe (vgl. BVerwG, Urt. v. 15.12.2016, a .a. O., Rn. 28).

Allerdings unterliegt auch die Zulässigkeit der Abschnittsbildung bestimmten Grenzen (z. B. Art. 19 Absatz 4 Satz 1 GG; Erfordernis einer eigenen sachlichen Rechtfertigung). Insbesondere ist es erforderlich, dass der Verwirklichung des Gesamtvorhabens auch im weiteren Verlauf zumindest bei einer summarischen Bewertung keine unüberwindlichen Hindernisse entgegenstehen (1.6.3. Prognostische Beurteilung des Gesamtvorhabens). Sicherzustellen ist, dass Dritte durch die Abschnittsbildung nicht in ihren Rechten verletzt werden. Eine solche Verletzung wäre beispielsweise dann zu befürchten, wenn die Abschnittsbildung Dritten den durch Art. 19 Absatz 4 Satz 1 GG gewährleisteten Rechtsschutz faktisch unmöglich machen oder dem Grundsatz umfassender Problembewältigung nicht gerecht werden würde (vgl. BVerwG, Urt. v. 15.12.2016, a. a. O., Rn. 26).

Dass Dritte durch die hier vorgenommene Abschnittsbildung in dieser Weise in ihren Rechten verletzt werden, ist auszuschließen. Der individuelle Rechtsschutz wird nicht vereitelt, da subjektive Rechte in jedem Verfahrensabschnitt uneingeschränkt geltend gemacht werden können, auch soweit die Gesamtplanung betroffen ist.

Zudem ist sichergestellt, dass keine andere Planungsvariante bei einer auf die Gesamtplanung bezogenen Betrachtung gegenüber dem hier gewählten Planungskonzept vorzugswürdig ist. Dies wird in Kapitel 4 Alternativen weiter ausgeführt.

Auch kann dem Plan nicht entgegengehalten werden, dem zur Planfeststellung anstehenden Abschnitt fehle eine eigene sachliche Rechtfertigung vor dem Hintergrund der Gesamtplanung. Das im Rahmen der fernstraßenrechtlichen Planfeststellung bestehende Erfordernis der "selbstständigen Verkehrsfunktion" eines jeden Abschnitts (stRspr, vgl. z. B. BVerwG, Beschl. v. 26.06.1992 – 4 B 1 – 11/92, NVwZ 1993, 572/573) existiert mit Blick auf die Planung von Energieleitungen – hier zu bezeichnen als "selbstständige Versorgungsfunktion" – nicht. Da Energienetze (d. h. auch das Übertragungsnetz Strom) im Vergleich zum Straßennetz in weitaus größeren Maschen geflochten sind, wäre die Leitungsplanung anderenfalls nur in einem Stück auf Grundlage eines unüberschaubaren Planfeststellungsverfahrens möglich (vgl. BVerwG, Urt. v. 15.12.2016, a.a.O., Rn. 28 unter Verweis auf die Planung von Schienenwegen, für die das Erfordernis ebenfalls entfällt).

#### 1.6.2. Gründe für die Festlegung der Genehmigungsabschnitte

Die nördliche Abschnittsgrenze ergibt sich durch die unterschiedlichen Rechtsgrundlagen für die Planfeststellungen für die Vorhabenteile. Denn für die Genehmigung des Gesamtvorhabens sind verschiedene Zuständigkeiten und Zulassungsverfahren erforderlich. Die 12 sm-Grenze grenzt das zum Gebiet des Landes Niedersachsen gehörende Küstenmeer von der deutschen AWZ der Nordsee ab. In Niedersachsen ist die NLStBV für das Planfeststellungsverfahren nach EnWG zuständig. In der AWZ ist der Bund, namentlich das BSH, für das Planfeststellungsverfahren nach WindSeeG zuständig. Das allseitige Interesse an einer effizienten Verfahrensgestaltung legt angesichts einer solchen räumlichen Kompetenzgrenze die Abschnittsbildung nahe (vgl. BVerwG, Urt. v. 15.12.2016, a.a.O., Rn. 28 bzgl. benachbarter Bundesländer – insoweit auf die 12 smz übertragbar). Dies führt zur Abgrenzung des Genehmigungsabschnitts AWZ von der übrigen Leitung (Küstenmeer- und Landtrasse).

Die südliche Abschnittsbegrenzung ist durch das Ende eines räumlich-technischen



## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 35 von 85

Sinnzusammenhangs der Vorhabenplanung am durch den landesplanerisch festgestellten Anlandungspunkt bei Dornumergrode gerechtfertigt. An der unmittelbar binnendeichs gelegenen Übergangsmuffe endet die Verlegung des Seekabels. Aus folgenden Erwägungen drängt sich hier eine Abschnittsbildung auf:

- Die Art und Weise der Kabelverlegung in See und an Land unterscheidet sich deutlich, da die Umweltbedingungen vollkommen unterschiedliche sind. Die technischen Herausforderungen (Beschaffenheit des Seekabels und Wahl des Verlegeverfahrens sowie Querung von Insel und Deich in geschlossener Bauweise mit Wasserbaustelle) sind deutlich von denjenigen der Landtrasse zu unterscheiden.
- Aufgrund der maritimen Umgebung unterscheiden sich die umweltfachlichen Fragestellungen (Kabelverlegung unter Eingriff in die benthischen Lebensgemeinschaften, insbes. im Nationalpark Wattenmeer) deutlich von denen der Landtrasse.
- Die Aufteilung in diese Abschnitte ermöglicht in der Projektabwicklung eine zeitliche Entkopplung der Genehmigungsverfahren, der darauf aufsetzenden Vorbereitung und Planung der Bauausführung (inkl. der Produktionsplanung der zu verlegenden Kabel und der vertraglichen Bindung und Bereitstellung der erforderlichen Ressourcen und Materialien) und der Bauausführung selbst. Insbesondere im Hinblick auf die zeitlich sehr restriktiven Vorgaben für den Umsetzungszeitraum des Gesamtvorhabens aus dem NEP einerseits und andererseits die für die (bauliche) Umsetzung vor allem im Küstenmeer und am Landesschutzdeich eng gefassten jährlichen Bauzeitenfenster (Berücksichtigung von Küstenschutz, Natur-/Artenschutz sowie Wetter- und Tidebedingungen) ist eine solche Abschnittsbildung notwendig.
- Für die See- und Landtrasse sind im Wesentlichen andere Fachbehörden zu beteiligen.
- Seeseitig sind nur in geringem Maße private und ganz andere öffentliche Belange durch das Vorhaben betroffen, als dies auf dem Teil der Landtrasse der Fall ist. Nicht zuletzt im Interesse der Planbetroffenen an einer handhab- und überschaubaren Planung erscheint die Trennung von land- und seeseitigen Abschnitten deshalb sinnvoll.

#### 1.6.3. Prognostische Beurteilung des Gesamtvorhabens

Wird ein Gesamtprojekt in mehreren Teilabschnitten ausgeführt, so begrenzt der zur Planfeststellung anstehende Abschnitt die Reichweite der jeweiligen Zulassungsentscheidung. Die Teilplanung darf sich allerdings nicht so weit verselbstständigen, dass Probleme, die durch die Gesamtplanung ausgelöst werden, unbewältigt bleiben. Insofern ist auch das Gesamtvorhaben in das Verfahren über den jeweiligen Teilabschnitt einzubeziehen.

Dies läuft aber nicht darauf hinaus, bereits im Rahmen der Planfeststellung des einzelnen Abschnitts die Zulassungsfähigkeit nachfolgender Planabschnitte mit derselben Intensität wie den konkret zur Planfeststellung anstehenden Abschnitt zu prüfen. Erforderlich, aber auch ausreichend, ist stattdessen die Prognose, dass der Verwirklichung der weiteren Planungsschritte keine von vornherein unüberwindlichen Hindernisse entgegenstehen. Es genügt eine "Vorausschau auf nachfolgende Abschnitte nach Art eines vorläufigen positiven Gesamturteils" (BVerwG, Urt. v. 15.12.2016, a.a.O., Rn. 29). Nicht notwendig ist hierfür, dass die zu betrachtenden übrigen Abschnitte ihrerseits einen bestimmten Verfahrensstand erreicht haben, denn in diesem Falle liefe die mit der Abschnittsbildung in Relation zum Gesamtvorhaben beabsichtigte Komplexitätsreduktion ins Leere.



Projekt/Vorhaben: NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 36 von 85

Aus dem Blickwinkel der durch das Vorhaben Betroffenen besteht insoweit ein Anspruch, die das Gesamtvorhaben betreffenden Fragen in die Planfeststellungsverfahren der einzelnen Teilabschnitte einzubeziehen.

Dies gilt umso mehr, wenn der konkrete Trassenverlauf des planfestzustellenden Abschnitts seinen Sinn auch aus der großräumigen Gesamtplanung und der überörtlichen Trassenführung bezieht. Dann können und sollen auch die von dem planfestgestellten Abschnitt verursachten Eingriffe mithilfe einer großräumig abgewogenen Gesamtplanung gerechtfertigt werden (siehe Kapitel 1.2 Das Gesamtvorhaben und Kapitel 4 Alternativen).

Der vorliegende Antrag auf Planfeststellung für den Genehmigungsabschnitt Küstenmeer ist der erste, den TenneT im Zusammenhang mit dem Vorhaben LanWin1 (NOR-12-1) stellt. Ungeachtet der noch nicht gestarteten übrigen Zulassungsverfahren ist die Planung für das Küstenmeer Teil einer Gesamtkonzeption (das Gesamtvorhaben). TenneT treibt die Projektierung des Gesamtvorhabens LanWin1 (NOR-12-1) in Abstimmung mit den jeweils zuständigen Behörden und weiteren Betroffenen auf allen Abschnitten voran.

Für den Genehmigungsabschnitt "AWZ" (Konverterplattform bis 12 sm-Grenze) erfolgt die Planung auf Basis der Festlegungen des FEP 2023, etwa bzgl. der anzubindenden Leistung, des Plattformstandortes und des Trassenkorridors bis hin zur 12 sm-Grenze. In den Jahren 2019 bis 2023 hat TenneT eigene Untersuchungen durchgeführt und Studien beauftragt. Diese betreffen v. a. die umweltfachlichen und geologischen Rahmenbedingungen im Planungsraum (Benthosprobenahme und geotechnische bzw. geophysikalische Surveys auf See sowie deren Auswertung).

Im Bereich der Landtrasse wurde ein Raumordnungsverfahren ("Landtrassen 2030") durchgeführt. Die Landesplanerische Feststellung wurde am 30.03.2023 erteilt. Hier wurde unter anderem festgestellt, dass der dargestellte Trassenkorridor zwischen dem Anlandungspunkt Dornumergrode und dem NVP Unterweser mit den Erfordernissen der Raumordnung unter Beachtung entsprechender Maßgaben vereinbar ist und den Anforderungen an die Umweltverträglichkeit entspricht. Das Planfeststellungsverfahren für den Abschnitt Landtrasse soll voraussichtlich in der ersten Jahreshälfte 2024 eröffnet werden.

Im Bereich der Konverterstation sind bereits die benötigten Grundstücke erworben worden. Somit erscheint eine Umsetzung sowohl der Landtrasse als auch der Konverterstation als möglich.

Als Fazit bleibt festzuhalten, dass trotz eventueller Konflikte eine Trassenführung vom Start-(Konverterstation Offshore) bis zum Zielpunkt (Konverterstation Onshore) möglich erscheint. Unüberwindbare Hindernisse, die den Erfolg des Gesamtvorhabens infrage stellen, sind nicht ersichtlich. Die Gefahr, dass ein "Planungstorso" zurückbliebe, besteht nicht.



# Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 37 von 85

### 2. Raumordnung und Landesplanung

## 2.1. Gegenstand und Ergebnis des Raumordnungsverfahrens "Seetrassen 2030"

Dem hier gegenständlichen Planfeststellungsverfahren ging ein Raumordnungsverfahren ("Seetrassen 2030") voraus, welches von der gem. § 19 Absatz 1 NROG verfahrensführenden Behörde ArL Weser-Ems am 11.01.2021 eingeleitet wurde und am 18.10.21 mit der Erteilung der Landesplanerischen Feststellung geendet ist.

In diesem Raumordnungsverfahren wurden die raumbedeutsamen Auswirkungen der Planung unter überörtlichen Gesichtspunkten geprüft. Das Raumordnungsverfahren schloss die Ermittlung, Beschreibung und Bewertung der raumbedeutsamen Auswirkungen des Vorhabens auf die in § 2 Absatz 1 Gesetz über die Umweltverträglichkeitsprüfung (UVPG) genannten Schutzgüter entsprechend dem Planungsstand ein. In den Verfahrensunterlagen sind voraussichtliche raumbedeutsame Auswirkungen auf die Umwelt beschrieben worden (§ 10 Absatz 3 NROG).

Als Ergebnis des Raumordnungsverfahrens "Seetrassen 2030" für die von Amprion Offshore GmbH und TenneT Offshore GmbH (Planungsträgerinnen) vorgelegte Planung von zukünftigen Korridoren für ONAS im niedersächsischen Küstenmeer, wurde festgestellt, dass der Trassenkorridor über Baltrum für den Bau von zunächst zwei ONAS mit den Erfordernissen der Raumordnung unter Beachtung der Maßgaben vereinbar ist. Diese zwei Trassen werden voraussichtlich von den derzeit in Planfeststellungsverfahren befindlichen ONAS BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2) genutzt.

Nach damaligem Planungsstand konnte die Planung zudem eine Vereinbarkeit mit anderen Rechtsvorschriften, insbesondere denen des Umweltschutzes, erreichen. Der landesplanerisch festgestellte Trassenkorridor stellt hinsichtlich der Erfordernisse der Raumordnung, der Umweltschutzgüter, der raumbedeutsamen Planungen und Maßnahmen Dritter und der weiteren raumbedeutsamen Nutzungen in der Zusammenschau aller Belange die raum- und umweltverträglichste Alternative dar.

Es wurde zunächst festgestellt, dass die Raumverträglichkeit einer Verlegung von mehr als zwei Systemen im Zuge einer weiteren Prüfung zu entscheiden ist. Mit dem Schreiben vom des ArL Weser-Ems vom 30.11.2022 wurde schließlich die Raumverträglichkeit der Verlegung von drei weiteren ONAS – und somit insgesamt fünf ONAS – im Baltrum-Korridor festgestellt. Das erste dieser drei zusätzlichen ONAS, die den Baltrum-Korridor nutzen sollen, ist das hier beantragte LanWin1 (NOR-12-1).

Gemäß Maßgabe der landesplanerischen Feststellung sind Zuge des im Planfeststellungsverfahrens geoelektrische Untersuchungen durchzuführen, um Aufschluss auf Lage und Ausprägung der Süßwasserlinse auf Baltrum zu erhalten. Diese Untersuchungen haben Sommer 2023 stattgefunden. Dem voraus geht ein Raumordnungsverfahrens erstelltes Gutachten, welches zu dem Schluss kommt, dass mindestens ein Abstand von 1600 m zur Süßwasserlinse besteht. Dieses Gutachten soll nun durch die geoelektrische Untersuchung mit aktuellen Daten bestätigt werden.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 38 von 85

## 2.2. Abweichungen vom Raumordnungsverfahren im Planfeststellungsverfahren

Entgegen den Planungen im Raumordnungsverfahren, in dem von einem Bauzeitenfenster von vier Monaten (Juni bis September) für die Herstellung der HDD-Bohrung unter Baltrum ausgegangen wurde, wurde im Zuge der technischen Planung im Vorfeld des Planfeststellungsverfahrens für die Herstellung der HDD Baltrum eine Bauzeit von sieben Monaten (April bis Oktober) als notwendig erachtet. Weitere Informationen hierzu können Kapitel 6.4 dieser Unterlage bzw. Anlage 3.1 Baubeschreibung HDD entnommen werden.

Im Schreiben des ArL Weser-Ems vom 30.11.2022 heißt es hierzu, dass die o. g. Aufweitung des Bauzeitenfensters im Rahmen des Planfeststellungsverfahrens bzw. der durchzuführenden FFH-Verträglichkeitsprüfung zu betrachten ist. "Nach wie vor gilt aber, dass für den Fall eines negativen Prüfungsergebnisses die Regelung des § 34 Absatz 3 Bundesnaturschutzgesetz greifen wird, da ein überwiegendes öffentliches Interesse besteht und keine zumutbaren Alternativen bestehen. Insbesondere ist festzustellen, dass die Aufweitung des Bauzeitenfensters auch bei anderen Korridoralternativen erforderlich wäre, sodass die vergleichende räumliche Bewertung der Landesplanerischen Feststellung weiterhin gültig ist."

In der Offshore-Realisierungsvereinbarung<sup>2</sup> wird bzgl. der Kreuzung des Küstenmeeres u.a. ausgeführt, dass "[...] in den Jahren 2024 bis 2030 die Errichtung auch im Zeitraum vom 1. April bis 31. Oktober erfolgen [soll], wenn dies mit dem Küstenschutz vereinbar ist. [...] Verbindliche Einzelfalllösungen zwischen den zuständigen Landesbehörden und den ÜNB, die aus und zwingenden Gründen des Arten-Gebietsschutzes (Natura 2000) Genehmigungsbescheid aufgenommen werden müssen, sind unter der Maßgabe möglich, dass die Zeitpläne und Meilensteine aus der Anlage zu dieser Vereinbarung eingehalten werden und der vereinbarte Termin der Inbetriebnahme erreicht wird. Dies wird in der Regel nicht mehr der Fall sein, wenn die Verwirklichung eines Lösungsansatzes zur Verschiebung von Bautätigkeiten um eine Saison (d.h. in das Bauzeitenfenster des Folgejahres) führen würde."

Dies ist im Baltrum-Korridor insbesondere für die Erstellung der Horizontalbohrungen (HDD-Bohrungen) zur Unterquerung der Insel Baltrum in den Jahren 2025 und 2026 notwendig und kann wie folgt begründet werden:

- Keine Aufsplittung auf mehr als zwei Jahre möglich, da aufgrund des engen Zeitplanes in der Gesamtschau aller Baustellen im Bereich des Baltrum-Korridors ansonsten die übrigen Baustellen (z.B. Wattkabelverlegung) behindert und/oder erst verzögert in den Folgejahren umgesetzt werden würden. Dies würde die Erreichung des 30 GW-Zieles erheblich gefährden.
- große Bohrungslänge von ca. 1800 m
- aufgrund des metallischen Rückleiters ist je ONAS eine Bohrung mehr herzustellen als bei vorherigen 320-kV ONAS

<sup>&</sup>lt;sup>2</sup> https://www.bmwk.de/Redaktion/DE/Downloads/neue-offshore-realisierungsvereinbarung-30-gw-bis-2030pdf.pdf?\_\_blob=publicationFile&v=1



### Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 39 von 85

- Bohrung vom Watt aus, dies bringt hohe logistische Herausforderungen mit sich
- Knappe Marktkapazität bei Fachfirmen (die Vorhabenträgerin geht davon aus, dass maximal zwei Bohrgeräte parallel laufen können)

Auch gemäß der aktualisierten Fassung des § 17d EnWG ist die o. g. Aufweitung des Bauzeitenfensters zulässig: "Im Küstenmeer soll in den Jahren 2024 bis 2030 die Errichtung auch im Zeitraum vom 1. April bis zum 31. Oktober erfolgen, wenn dies mit dem Küstenschutz vereinbar ist."

### 2.3. Festlegungen im Landesraumordnungsprogramm (LROP)

Das LROP wurde am 07.09.2022 fortgeschrieben. Hier wird in Abschnitt 4.2.2 Energieinfrastruktur Ziffer 11 das folgende Ziel (Satz 7) bzw. werden die folgenden Grundsätze (Sätze 8 bis 10) bzgl. der Verlegung von Stromkabeln im Bereich Baltrum wie folgt festgelegt:

<sup>7</sup>Die in den Vorranggebieten Kabeltrasse für die Netzanbindung (See) bestehenden Kapazitäten der Kabelverlegung sind bestmöglich auszunutzen.

<sup>8</sup>Zur Reduzierung des Platzbedarfs sollen die Kabelsysteme in den Vorranggebieten Kabeltrasse für die Netzanbindung (See) der nach aktuellem Stand der Technik höchsten Übertragungsleistung entsprechen. <sup>9</sup>Bei allen raumbedeutsamen Planungen und Maßnahmen soll berücksichtigt werden, dass im Bereich Baltrum/Langeoog für den weiteren Ausbau der Offshore-Windenergie sowie der Interkonnektoren die Trassierung von Kabelsystemen erforderlich ist. <sup>10</sup>Die Verlegung von Kabelsystemen im Bereich Baltrum/Langeoog soll erst nach Ausschöpfung der Kapazitäten der gemäß Satz 3 in der Anlage 2 festgelegten Vorranggebiete Kabeltrasse für die Netzanbindung (See) erfolgen.

In der Bestätigung des NEP 2035 (2021) der BNetzA vom 14. Januar 2022 waren für das ONAS NOR-12-1 der Übergang ins niedersächsische Küstenmeer via Grenzkorridor N-II und Wehrendorf als NVP vorgesehen. Der FEP 2023 vom 20. Januar 2023 sowie der NEP 2023-2037/2045 vom 1. März 2024 sehen dagegen den Grenzkorridor N-III und den NVP Unterweser für das ONAS NOR-12-1 vor. Dennoch ist bereits im NEP 2035 (2021) eine Verlegung von zwei Kabelsystemen über den Grenzkorridor N-III und damit nicht über den Grenzkorridor N-II, der im Küstenmeer in den Trassenkorridor Norderney II übergeht, festgelegt. Somit wird auf Ebene des NEP bereits vor Erhöhung der Ausbauziele (beschlossen im Koalitionsvertrag im Herbst 2021 und gesetzlich geregelt im WindSeeG) die Notwendigkeit einer vorzeitigen Erschließung eines neuen Korridors abweichend des in Satz 7 (LROP Abschnitt 4.2.2, Ziffer 11) geregelten Zieles des LROP angedeutet.

Mit der Novelle des WindSeeG zum 01.01.2023 wird eben dieses erhöhte Ausbauziel auf Bundesebene rechtlich verankert und um eine langfristigere Zielsetzung ergänzt. Dies wird auch in § 1 Absatz 2 des WindSeeG ausgeführt.

Um den erhöhten Ausbauzielen zu begegnen, wurde vom BSH Ende 2021 das Neuaufstellungsverfahren des FEP 2020 eingeleitet, welches in der Veröffentlichung des FEP 2023 am 20.01.2023 endete. In diesem wird festgelegt, dass ab 2029 parallel zum Norderney II-Korridor über den Baltrum-Korridor ONAS in Betrieb gehen sollen. Somit wird auch



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 40 von 85

**Abschnitt Seetrasse** 

auf Ebene des FEP eine vorzeitige Erschließung eines weiteren Korridors festgelegt.

Dennoch muss nicht von Ziel in Satz 7 abgewichen werden, denn die vorhandenen Korridore werden trotzdem "bestmöglich" ausgenutzt: Diese sollen zeitlich sobald wie möglich aufgefüllt werden. Dies ist für den Norderney II-Korridor mit der Inbetriebnahme eines ONAS in 2032 der Fall.

Außerdem umschließt dies zum einen die bestmögliche Ausnutzung des vorhandenen Platzes anstelle einer Verlegung der einzelnen Kabel ohne Rücksicht auf ggf. einschränkende Auswirkungen für nachfolgende Kabelbauvorhaben. Zum anderen umschließt dies auch eine Nutzung von Kabeln mit möglichst hoher Leistungskapazität nach dem neuesten Stand der Technik, um die Gesamtzahl der benötigten Kabel zu reduzieren. Gemäß FEP 2020 werden in der Nordsee nach aktuellem Stand der Technik Kabel mit einer Standardübertragungsleistung von 900 MW bei einer Standardübertragungsspannung von +/- 320 kV verlegt. Es wird jedoch festgelegt, dass für eine Anbindung der Zone 3 (Flächen N.9 bis N.13) eine Erhöhung der Standardübertragungsspannung auf 525 kV mit einer Standardübertragungsleistung von 2.000 MW stattfinden soll. Die Verwendung von Kabeln mit einer erhöhten Standardübertragungsleistung dient der optimalen Ausnutzung der Bündelungstrassen aus LROP-Abschnitt 4.2.2 Ziffer 11 Satz 3 und zur Reduzierung der Engpässe bezüglich der Anbindung von Offshore-Windparks.

Der in Satz 10 (LROP-Abschnitt 4.2.2 Ziffer 11) befindliche Grundsatz der Raumordnung ist anders als das Ziel in Satz 7 noch nicht als Erfordernis der Raumordnung einzustellen. Dieser Sachverhalt wird auch in der Begründung des LROP unter "Zu Ziffer 11 Satz 10" ausgeführt. So könne eine Erforderlichkeit für eine Abweichung vom Grundsatz in Satz 10 gegeben sein, wenn bis 2030 mehr als fünf Kabelsysteme über Norderney zu verlegen wären. Denn dies scheint aufgrund der Sensibilität des zu querenden Raumes sowie der damit verbundenen naturschutzrechtlichen und deichrechtlichen Restriktionen nicht vorzugswürdig zu sein. Auch hier wird auf die Festlegung im FEP 2020 von zwei Kabelsystemen über Grenzkorridor hingewiesen. Aus diesen Gründen erscheint es aus Sicht der Vorhabenträgerin begründet, vom Grundsatz in Satz 10 abzuweichen.

Überdies hat die Niedersächsische Landesregierung in ihrer Kabinettssitzung vom 25.07.2023 beschlossen, das Landes-Raumordnungsprogramm (LROP) fortzuschreiben. Das Verfahren wurde mit Bekanntmachung der allgemeinen Planungsabsichten bereits eingeleitet. Die allgemeinen Planungsabsichten legen dar, welche Teile des LROP voraussichtlich geändert oder ergänzt werden sollen. Laut der Planungsabsichten sollen die "in Ziffer 11 festgelegten Vorranggebiete Kabeltrasse für die Netzanbindung (See) [...] um die Offshore-Anbindungstrassen über Baltrum und Langeoog ergänzt werden."



## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung

Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 41 von 85

### 3. Beschreibung des beantragten Trassenverlaufs

### 3.1. Trassierungsgrundsätze

Unter Berücksichtigung der einschlägigen Vorschriften, wie z. B. der DIN VDE- bzw. EN-Bestimmungen (DIN-Normen des Verbands der Elektrotechnik, Elektronik und Informationstechnik (VDE) bzw. deutsche Übernahme einer Europäischen Norm (EN)), der Kriterien und Festlegungen der Raumordnung sowie sonstiger Fachpläne, unterliegt die Trassierung der beantragten Leitung LanWin1 (NOR-12-1) im Küstenmeer sowie im Bereich der Insel Baltrum den im Folgenden aufgeführten allgemeinen Grundsätzen:

- Möglichst geradliniger Verlauf mit dem Ziel des geringsten Eingriffs in Umwelt und Natur
- Minimierung des Einflusses auf und Berücksichtigung von Naturschutzgebieten, FFHund Vogelschutzgebieten, Landschaftsschutzgebieten, geschützten Landschaftsteilen, geschützten Biotopen, Natur- und Kulturdenkmalen sowie Bereichen sehr seltener oder sehr empfindlicher Böden
- Bündelung mit anderen vorhandenen linienförmigen Infrastrukturobjekten (z. B. weitere Energiekabel, Rohrleitungen)
- Berücksichtigung der topographischen Verhältnisse
- Berücksichtigung weiterer unter Schutz stehender Räume, wie z. B. bedeutsame Gebiete oberflächennaher Rohstoffvorkommen
- Berücksichtigung von Standorten seltener oder gefährdeter Pflanzenarten
- Berücksichtigung von Verkehrstrennungsgebieten, militärischen Übungsgebieten und sonstigen Gebieten, die einer gesetzlichen Nutzungsbestimmung unterliegen
- Berücksichtigung von Altlastverdachtsflächen, Altablagerungen und Kampfmittelverdachtsflächen
- Berücksichtigung der Bodenbeschaffenheit
- Maximierung möglicher Abstände zu Siedlungen und Einzelwohngebäuden unter Beachtung aller anderen Schutzgüter
- Berücksichtigung von berechtigten, hinreichend gefestigten Nutzungsinteressen
- Berücksichtigung der Erkenntnisse der naturschutzfachlichen Projektbegleitung der bereits errichteten und im Bau befindlichen Leitungen auf der Norderney-Trasse

#### 3.2. Trassenbeschreibung

Der Verlauf der Trasse von LanWin1 (NOR-12-1) ist im Übersichtsplan (siehe Anlage 2.1) dargestellt und reicht innerhalb des Genehmigungsabschnitts Küstenmeer vom Grenzkorridor N-III (Übergang AWZ-Küstenmeer) über Baltrum bis zum Anlandungspunkt bei Dornumergrode. Dort befindet sich der Übergang zur Landtrasse. Die Trassenpositionsliste in Anlage 4A gibt Auskunft über die geplanten Trassenkoordinaten.

Die hier beantragte Seetrasse (Abschnitt 12 sm-Zone) beginnt am Grenzkorridor N-III. Im Sublitoral nördlich Baltrums verläuft die Trasse zunächst parallel zu den bestehenden Gaspipelines Europipe 1 & 2. Im Bereich der 20-m-Wassertiefenlinie kreuzt die Trasse die Pipelines rechtwinklig (von Ost nach West). Nach der Unterquerung der Insel Baltrum mittels HDD verläuft die Trasse durch das Baltrumer Inselwatt und das Wattfahrwasser. Im Anschluss



Projekt/Vorhaben: NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 42 von 85

werden die Dornumer Balje, das Dornumer Watt und die Küstenschutzbereiche gequert. Die Trasse endet am Festland am Anlandungspunkt bei Dornumergrode im Landkreis Aurich. Hier wird der Landesschutzdeich ebenfalls mittels einer HDD unterbohrt. Die Übergangsmuffe zum Landkabel und damit der Anlandungspunkt befindet sich zwischen den beiden Deichlinien in der Gemeinde Dornum bei Dornumergrode.

Der Abstand zwischen den LanWin1 (NOR-12-1) und den benachbarten ONAS wird so gering wie möglich gewählt, um die Vorhaben möglichst platzsparend zu realisieren. Im Tief- und Flachwasserbereich nördlich der Insel werden die drei Leiter eines einzelnen ONAS jeweils in einem Bündel verlegt. Der Abstand zu den benachbarten geplanten ONAS beträgt 100 m zur einen und 200 m zur anderen Seite, um wenigstens auf einer Seite genügend Raum für Reparaturarbeiten zu haben. Dieser Abstand bleibt bis etwa zur 10 m-Tiefenlinie beibehalten. Aufgrund der sich in diesem Bereich sukzessive verringernden Wassertiefe genügen von hier an geringere Reparaturabstände. Daher verringert sich der Abstand auch auf der westlichen Seite von 200 m auf 100 m. Dieser Abstand wird im gesamten Flachwasser bis zum Nordstrand Baltrum beibehalten.

Im Bereich der HDD-Bohrungen beträgt der aus Gründen der wechselseitigen thermischen Beeinflussung notwendige Mindestabstand zwischen den drei Leitern eines einzelnen ONAS in der Draufsicht ca. 12,6 m. Die HDDs werden allerdings in der Form eines auf dem Kopf stehenden Dreiecks verlegt: Während zwei Bohrungen in einer Tiefe von ca. 28 m (38 m im Bereich Baltrum) erstellt werden, liegt die dritte Bohrung in einer Tiefe von 33 m (43 m im Bereich Baltrum).

Im Bereich der Wattquerung werden die drei Leiter wieder gebündelt verlegt. Der Abstand zum nächsten ONAS beträgt, wie schon bislang im Norderney-II-Korridor praktiziert, 50 m. Im Bereich der HDD-Bohrungen zur Deichquerung bei Dornumergrode verringert sich der Abstand wiederum nach dem im Zusammenhang mit der Inselquerung erläuterten Prinzip. Näheres zum HDD-Verfahren und zur Kabelinstallation enthalten die Anlagen 3.1 und 3.2.

Die geplante Kabeltrasse wurde entsprechend der verschiedenen Baumaßnahmen in technische Bauabschnitte unterteilt, die in Abbildung 11 dargestellt sind. Tabelle 4 gibt einen Überblick über die Trassenlängen und die geplanten Baumaßnahmen auf den Bauabschnitten.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 43 von 85

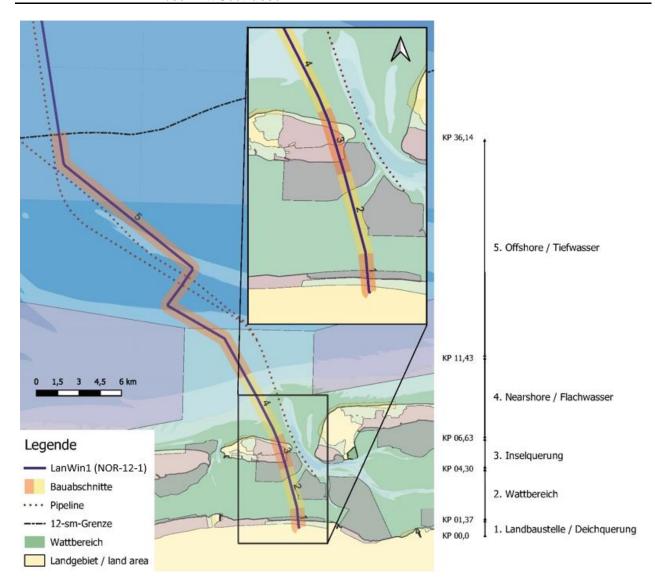



Abbildung 11: Bauabschnitte im Küstenmeer

Im Hintergrund sind die Zonen des Nationalparks dargestellt: Rötlich/lila = Zone I, blass grün = Zone II, gelblich = Zone III.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung

Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 44 von 85

Tabelle 4: Bauabschnitte und geplante Baumaßnahmen für LanWin1 im Genehmigungsabschnitt Küstenmeer (12 sm-Grenze bis Dornumergrode).

|   | Technischer Bauabschnitt                             | Länge (ca.)                          | Maßnahme                                                                                                                                                                                                                                                                                                                                       |
|---|------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Offshore<br>(Sublitoral bis 12 sm-Grenze)            | 24.800 m                             | Verlegung des HGÜ-Kabelsystems in halboffener Bauweise (z. B. mittels TROV)                                                                                                                                                                                                                                                                    |
| 4 | Nearshore<br>(Sublitoral bis 8-14 m-<br>Tiefenlinie) | 5.300 m<br>(bis 10 m<br>Tiefenlinie) | Verlegung des HGÜ-Kabelsystems in halboffener Bauweise (z.B. mittels "Stehendem Spülschwert") inklusive Überbrückung des Brandungsbereichs (z.B. mittels Spüllanze) und Montage einer Verbindungsmuffe an der 8-14 m-Tiefenlinie                                                                                                               |
| 3 | Querung Baltrum<br>(Inselquerung)                    | 1.800 m                              | Installation einer Kabelschutzrohranlage im HDD-Verfahren auf einer Länge von ca. 1.800 m und Einzug des HGÜ-Kabelsystems sowie Montage einer Verbindungsmuffe im Jahr der Nearshore-Kabelverlegung                                                                                                                                            |
| 2 | Wattbereich<br>(Eulitoral)                           | 2.900 m                              | Verlegung des HGÜ-Kabelsystems in halboffener Bauweise (z.B. mittels Vibrationsschwert) sowie in Bereichen der Kabelschutzrohrenden teilweise im offenen Leitungsgraben. Insbesondere im Bereich vor dem HDD-Eintritt im Baltrumer Watt ist aufgrund der niedrigen Wasserstände eine längere offene Kabelverlegung von etwa 500 m zu erwarten. |
| 1 | Deichquerung<br>(Landbaustelle)                      | 1.300 m                              | Installation einer Kabelschutzrohranlage im HDD-Verfahren (HDD Dornumergrode) auf einer Länge von ca. 1.300 m und Einzug des HGÜ-Kabelsystems, inklusive Muffenanbindung im offenen Leitungsgraben und Montage der Übergangsmuffe auf der BE-Fläche "Dornumergrode"                                                                            |

Hinweis: Die hier beschriebenen technischen Bauabschnitte unterscheiden sich zu den Abgrenzungen der Bauabschnitte in den naturschutzfachlichen Unterlagen. Dies begründet sich darin, dass, anders bei ersteren, bei zweiteren eine Unterscheidung hinsichtlich der Naturräume vorgenommen wird.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 45 von 85

### 3.3. Kreuzungen

Projekt/Vorhaben:

Eine Übersicht aller identifizierten Kreuzungen im betrachteten Genehmigungsabschnitt von der 12 sm-Grenze bis zum Anlandungspunkt bei Dornumergrode wird in der Anlage 5 gegeben. Im Wesentlichen umfasst dies Straßen, Wege, Deiche, Gräben und Fremdanlagen, wie insbesondere die Rohrleitungen Europipe 1 und Europipe 2 zwischen nördlicher Grenze des Nationalparks Wattenmeer und südlichen Rand des Verkehrstrennungsgebietes.

#### 3.4. Schifffahrt

In dem hier zu betrachtenden Genehmigungsabschnitt von der 12 sm-Grenze bis zum Anlandungspunkt bei Dornumergrode sind im marinen Bereich außer den Belangen des Schiffsverkehrs und der Fischerei keine weiteren zu berücksichtigenden Nutzungen bekannt. Die Bereiche der Baustelleneinrichtungsflächen (BE-Flächen) in Dornumergrode werden landwirtschaftlich genutzt. Im Weiteren wird der Bereich der Bohraustrittspunkte am Nordstrand als Erholungsgebiet genutzt.

Die GDWS berichtet jährlich in den Verkehrsberichten über die Entwicklung des Verkehrsaufkommens auf deutschen Schifffahrtswegen. Diese sogenannten WSV-Berichte werden durch die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) veröffentlicht. Daraus lässt sich die Verkehrsentwicklung im Gebiet der "Deutschen Bucht" der letzten Jahre ableiten.

Aus nautischer Perspektive kann das Untersuchungsgebiet in der deutschen Bucht, durch welches die Kabeltrasse LanWin1 (NOR-12-1) verläuft, wie in Tabelle 5 dargestellt in drei Verkehrszonen gegliedert werden. Neben der Abgrenzung der Verkehrszonen, gibt Tabelle 5 einen Überblick über die Verkehrsarten entlang der Kabeltrassen.

Tabelle 5: Aufteilung des Untersuchungsgebietes in drei Verkehrszonen.

| Nummer der<br>Verkehrszone | Räumliche Ausdehnung der<br>Verkehrszone                     | Verkehrsarten                                                                                                                                                                           |
|----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verkehrszone 1             | Dornumergrode bis Baltrum                                    | Sportschifffahrt und kleine Fahrzeuge mit geringem Tiefgang; Wassertiefe bis ca. 5 m                                                                                                    |
| Verkehrszone 2             | Küstenverkehrszone (KVZ)                                     | Schiffe mit einer Länge < 20 Meter oder mit einem Ziel-/Abfahrtshafen innerhalb der KVZ                                                                                                 |
| Verkehrszone 3             | Verkehrstrennungsgebiet (VTG)<br>"Terschelling German Bight" | Internationale Handelsschifffahrt, Besatzung nach STCW (Standards of Training, Certification and Watchkeeping for Seafarers) ausgebildet, ausgestattet mit modernen Navigationssystemen |

Die erste Verkehrszone (Wattenmeer südlich von Baltrum und insbesondere das Baltrumer Wattfahrwasser) wird zum überwiegenden Teil von kleinen und manövrierfähigen Sport- und Fischerbooten sowie Fahrgast-, Inselversorgungs- und Ausflugsfahrzeugen genutzt. Seltener sind in dieser Verkehrszone Arbeitsfahrzeuge, wie zum Beispiel Vermessungsschiffe, Tonnenleger



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 46 von 85

oder Kabellegefahrzeuge anzutreffen. In jedem Fall handelt es sich jedoch um kleine Fahrzeuge mit geringem Tiefgang.

der Küstenverkehrszone (KVZ) darf gemäß Kollisionsverhütungsregel (Verkehrstrennungsgebiete) ein Schiff nur verkehren, wenn es sich auf dem Weg zu oder von einem Hafen, einer Offshore-Anlage oder -Konstruktion, einer Lotsenstation oder einem anderen Ort innerhalb der KVZ befindet oder um unmittelbare Gefahren zu vermeiden. Die Küstenverkehrszone ist kleineren Booten, Segelschiffen und Motorschiffen mit einer Länge von bis zu 20 Metern vorbehalten. Größere Motorschiffe müssen die seewärtige Verkehrstrennungszone nutzen. In der KVZ fahren überwiegend Sportboote und Fischereifahrzeuge. In beiden Gebieten sind die schnellen Fähren (aufgeführt als "Fast Ferry"), welche mit mitunter hohen Geschwindigkeiten zwischen dem Inselhafen Baltrum und dem Festland verkehren, hervorzuheben. Seltener ist sowohl in der KVZ als auch im Seegatt "Accumer Ee" der Durchgangsverkehr von Frachtschiffen, Tankern und Arbeitsfahrzeugen zu beobachten.

In der dritten Verkehrszone durchquert das Vorhaben LanWin1 (NOR-12-1) das Verkehrstrennungsgebiet (VTG) "Terschelling German Bight". Das VTG "Terschelling German Bight" ist ein Gebiet mit hoher Verkehrsdichte, das auch von größeren Schiffen (Schiffe über 300 Meter) befahren wird. Nahezu alle Fahrzeuge passieren das VTG im gerichteten Verkehr. Die Fahrstreifen des VTG sind mit einer breiten Trennlinie voneinander abgegrenzt. In den Jahren 2021 und 2022 nutzten 26.529 bzw. 25.011 Schiffe das VTG "Terschelling German Bight" (vgl. GDWS 2023). Es kann nicht festgestellt werden, dass größere Schiffe zwangsläufig die Nordroute "German Bight Western Approach" bevorzugen. Wichtig ist aber zu erwähnen, dass das VTG "German Bight Western Approach" als Route für Tankschiffe mit gefährlicher Ladung eine Bruttoraumzahl von/über 10.000 BRZ vorschreibt (vgl. IMO 1997).

Tabelle 6 gibt einen Überblick über die Verkehrszahlen im Jahr 2018, kategorisiert nach Schiffsgrößen (von < 40 m bis > 120 m). Im verkehrsreichen Gebiet stellt die Gruppe "G = Trockenladungsschiffe" mit einer Länge von mehr als 120 Metern mit Abstand den größten Teil des Verkehrs dar (vgl. GDWS 2019).

Tabelle 6: VTG Verkehrszahlen Nordsee 2018.

|          |                                                        |     | und | ≥ 50<br>und<br>< 60 | ≥ 60 und < | ≥ 70 und < | ≥ 80 und | und  | und  | ≥ 110<br>und<br>< 120 | ≥ 120 | Gesamt<br>2018 |
|----------|--------------------------------------------------------|-----|-----|---------------------|------------|------------|----------|------|------|-----------------------|-------|----------------|
| <b>=</b> | F = Fischer                                            | 35  | 7   | 6                   | 21         | 4          | 17       | 5    | 0    | 0                     | 0     | 96             |
| E        | M =Marine-Behördenfz                                   | 74  | 15  | 39                  | 17         | 16         | 8        | 4    | 4    | 0                     | 20    | 197            |
| Bight    | S = Spezialfahrzeug<br>Bagger, Versorger,<br>Schlepper | 247 | 46  | 39                  | 43         | 31         | 79       | 44   | 21   | 17                    | 114   | 681            |
|          | O = Tanker                                             | 1   | 0   | 7                   | 31         | 139        | 146      | 741  | 1029 | 575                   | 972   | 3642           |
| VTG Ter  | G = Trockenfrachter                                    | 1   | 1   | 26                  | 48         | 196        | 3622     | 1643 | 1082 | 838                   | 14082 | 21539          |
|          | Z = unbekannt                                          | 448 | 26  | 21                  | 17         | 33         | 20       | 23   | 4    | 13                    | 634   | 1239           |
|          | GESMAT                                                 | 806 | 95  | 138                 | 177        | 419        | 3892     | 2460 | 2140 | 1443                  | 15822 | 27394          |



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 47 von 85

#### 4. Alternativen

Nach § 43 Absatz 3 EnWG sind bei der Planfeststellung die von dem Vorhaben berührten öffentlichen und privaten Belange im Rahmen der Abwägung zu berücksichtigen. Nach ständiger Rechtsprechung des Bundesverwaltungsgerichts müssen ernsthaft in Betracht kommende Alternativlösungen bei der Zusammenstellung des Abwägungsmaterials berücksichtigt werden und mit der ihnen zukommenden Bedeutung in die vergleichende Prüfung der von den möglichen Alternativen jeweils berührten öffentlichen und privaten Belange eingehen (vgl. st. Rspr, Bundesverwaltungsgericht (BVerwG), Urteile vom 3. März 2011,- 9 A 8.10, – juris, Rn. 65, vom 11. Oktober 2017, - 9 A 14.16, - juris, Rn. 132). Planung ist deshalb nicht alternativlos, sondern Ergebnis eines abwägenden Alternativenvergleichs. Dieser hat auch mit Blick auf das Vorhaben LanWin1 (NOR-12-1) und den hier gegenständlichen Genehmigungsabschnitt stattgefunden.

### 4.1. Technische Alternative: Drehstromübertragung

Eine Drehstromleitung scheidet aus technischen und wirtschaftlichen Gesichtspunkten aus. Dieser Umstand hat auch Eingang in die Festlegungen des FEP 2020 gefunden. Dieser legt gem. § 5 Absatz 1 Nummer 11 WindSeeG standardisierte Technikgrundsätze fest, die neben den Offshore-Windparks auch ONAS betreffen. Teil dieser Technikgrundsätze ist die Festlegung der Gleichstromtechnik als "Standardkonzept Nordsee" (BSH 2023: 15 und 55).

Zur Begründung verweist der FEP auf die im Vergleich zur Ostsee längeren Trassen (mehr als 100 km, trifft auch auf das Vorhaben LanWin1 (NOR-12-1) zu), die bei Verwendung von Drehstromtechnik zu höheren Übertragungsverlusten führen und die zusätzliche Installation von Blindleistungskompensationsanlagen erforderlich machen würde. Aufgrund der im Vergleich höheren Systemleistung der Gleichstromtechnik wird durch deren standardmäßigen Einsatz zudem die insgesamt benötigte Anzahl an ONAS reduziert. Dies mindert den Raumbedarf und das Ausmaß notwendiger Eingriffe in die vom Offshore-Ausbau berührten Ökosysteme. Die standardisierten Technikgrundsätze gehören zu den Festlegungen des FEP, die gemäß § 6 Absatz 9 WindSeeG für nachfolgende Planfeststellungsverfahren verbindlich sind.

Eine Abweichung innerhalb des Zulassungsverfahrens ist nur möglich, wenn diese "notwendig oder aufgrund von neuen Erkenntnissen sinnvoll ist" (BSH 2023: 15). Beides ist mit Blick auf das Vorhaben LanWin1 (NOR-12-1) nicht der Fall, vielmehr kommen die im FEP 2023 genannten, in Richtung der Gleichstromtechnik weisenden Argumente hier weiterhin zum Tragen. Die damit im FEP 2023 unmittelbar für die AWZ getroffene technische Entscheidung für die Verwendung der Gleichstromtechnik wirkt sich naturgemäß auch auf den Planungsabschnitt Küstenmeer des Vorhabens LanWin1 (NOR-12-1) aus.

#### 4.2. Technische Alternative: Offene Bauweise über das Ostende Baltrums

Unter anderem aufgrund der Notwendigkeit einer Aufweitung des Bauzeitenfensters für die Erstellung der HDD im Bereich Baltrum (Bauabschnitt 3) wurde seitens der Vorhabenträgerin eine technische Alternative entwickelt, die sich im regulären Bauzeitenfenster umsetzen ließe. Diese Alternative sieht vor, die Insel Baltrum nicht mittels HDD-Verfahren zu queren sondern die Seekabel um das östliche Ende der Insel Baltrum herum zu führen und in offener Bauweise mittels Vibrationsschwert oder Frästechnik in der erforderlichen Verlegetiefe abzulegen.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 48 von 85

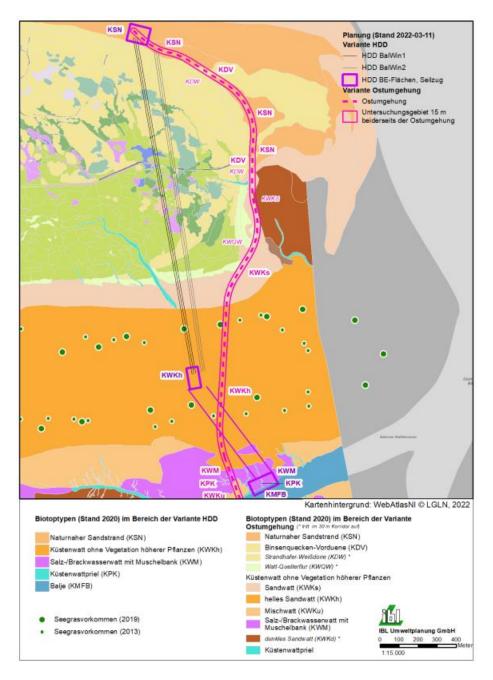



Abbildung 12: Alternative Inselquerung am Oststrand.

Abbildung 12 zeigt den alternativen Trassenverlauf im Inselosten in pink<sup>3</sup>. Bei der nunmehr abweichend vom Raumordnungsverfahren in Rede stehenden alternativen Verlegung werden spezielle Geräte für den Transport und das Einbringen der Kabel in das Sediment benötigt. Aufgrund der hohen Kabelgewichte (525 kV-Leiter) müssen diese Geräte bzw. Fahrzeuge, die bei Niedrigwasser arbeiten, entsprechend groß dimensioniert sein. Wie bei einer Kabelverlegung im

\_

<sup>&</sup>lt;sup>3</sup> Die Abbildung entstammt einer umweltfachlichen Bewertung der Ostvariante, die zu einem Zeitpunkt erstellt wurde, als die Bezeichnungen der fünf Baltrum-ONAS noch nicht feststanden. Daher sind die Bezeichnungen der HDD-Trassen in der Legende nicht korrekt und die nun geplante Trasse des Antragsgegenstandes LanWin1 (NOR-12-1) ist nicht dargestellt.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 49 von 85

Sub- bzw. Eulitoral kommt auch hier eine Verlegebarge zum Einsatz, die die Kabel und das mobile Verlegegerät transportieren soll. Das Auslegen der Leitungen und auf Tiefe bringen der Kabel übernimmt ein mit breiten Ketten angetriebenes Verlegegerät. Das bei Niedrigwasser operierende Verlegetool am Kettenfahrzeug kann in der Vibrationstechnik, im Einspülverfahren oder mittels einer Fräse arbeiten. Vibrations- oder Einspültechnik sind bekannte halboffene (halbgeschlossene) Bauweisen nach dem Orientierungsrahmen Naturschutz. Hierbei wird Sediment (respekt. Boden) verdrängt oder verflüssigt (bei Anwendung unter Wasser) und die Leitung (also das Kabelbündel) kann auf Einbautiefe aufgrund des Eigengewichts gebracht werden. Das Bodenmaterial (bzw. das Sediment) wird nicht erst ausgegraben, sondern der Kabelgraben verfüllt sich bautechnisch komplett oder weitgehend komplett selbst (daher halboffene Bauweise), weil der Baugrund wassergesättigt ist. Eine Refill-Technik ist nicht vorgesehen. Eine davon abweichende Bauweise z.B. in der Frästechnik führt zum Austrag des Sediments (des Bodens). Der Kabelgraben muss wie bei der offenen Bauweise aktiv rückverfüllt werden.

Der für BalWin3 und BalWin4 (damals noch als BalWin1 und BalWin2 bezeichnet) durchgeführte naturschutzfachliche Vergleich der beiden Varianten ist auch für LanWin1 gültig. Der Vergleich ergab, dass für die alternative Variante insbesondere im Bereich des Ostendes bereits für ein System dauerhafte erhebliche Beeinträchtigungen für Primärdünen allein nur bei der Erstinstallation der Kabel nicht auszuschließen sind. Der Eingriff innerhalb der inselseitigen Ruhezone des Nationalparks und des Weltnaturerbes ist in diesem Fall nicht sicher einzuschätzen. Es muss nach heutiger Sicht von einer dauerhaften erheblichen Beeinträchtigung des Lebensraumtyps ausgegangen werden.

Insgesamt werden durch die offene Verlegung Auswirkungen auf Biotoptypen auf einer Fläche von ca. 59.300 m² erwartet. Zudem sind prioritär natürliche Lebensraumtypen bei der alternativen Bauweise anders als bei der HDD dauerhaft betroffen. Dieser Umstand dürfte im Zusammenhang mit den Belangen von Natura 2000 im eigentlichen Zulassungsverfahren eine gewichtige Bedeutung erlangen, denn bereits die dauerhafte Schädigung von Lebensraumtypen im FFH-Gebiet kann nach dem Fachkonventionsvorschlag des Bundesamtes für Naturschutz (sog. Lamprecht & Trautner-Leitfaden aus 2007) als erhebliche Beeinträchtigung des Schutzzwecks, der Erhaltungsziele und der wertbestimmenden Bestandteile bewertet werden. Dieses gilt vorhabenbedingt im Einzelnen für jedes System und ggf. erst recht im Zusammenwirken mehrerer Systeme im Baltrum-Korridor, wenn sich dauerhafte Auswirkungen summieren.

Vorzugswürdig ist dementsprechend die Querung der Insel mittels HDD in geschlossener Bauweise.

### 4.3. Alternativer Netzverknüpfungspunkt

Der NVP Wilhelmshaven 2 kann aufgrund von Netzengpässen ab Umspannwerk Conneforde ausgeschlossen werden.

Andere NVP im Bereich Ovalgönne/Rastede/Westerstede/Wiefelstede bzw. Blockland/neu sind zum Zeitpunkt der Inbetriebnahme von LanWin1 (NOR-12-1) noch nicht verfügbar.

Auch ein Anschluss an den NVP Emden/Ost ist auszuschließen, da mit einer zusätzlichen Schaltanlage von 2000 MW in Verbindung mit den drei bis dahin realisierten ONAS mit jeweils 900



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 50 von 85

MW das UCTE-Kriterium verletzt werden würde. Dieses besagt, dass ein Ausfall von gekuppelten Sammelschienen nicht zu einem Erzeugungsausfall von mehr als 3000 MW führen darf. Eine bauliche Entkopplung der Sammelschienen ist am NVP Emden/Ost räumlich nicht möglich.

Die technische Alternative eines anderweitigen Netzanschlusses – die im Übrigen auch nichts an der Notwendigkeit einer Küstenmeerquerung ändern würde – steht im Rahmen der Planfeststellung somit nicht zur Verfügung.

### 4.4. Nichtleitungsgebundener Energietransport

Der sich aus NEP und FEP ergebende Planungsansatz sieht vor, den auf dem Gebiet N-12 erzeugten Strom leitungsgebunden abzuführen und an das Übertragungsnetz anzuschließen.

Ein nichtleitungsgebundener Energietransport – zum Beispiel mittels Umwandlung der Energie vor Ort in Gase (insbesondere Wasserstoff) – ist in den erforderlichen Dimensionen technisch noch nicht ausgereift und steht daher als Alternative nicht zur Verfügung. Zudem wäre eine solche Variante nicht planfeststellungsfähig nach § 43 EnWG und ist daher keine im vorliegenden Verfahren ernsthaft in Betracht kommende Alternative.

#### 4.5. Trassenalternativen

Der Verlauf der Antragstrasse im hier betrachteten Genehmigungsabschnitt Küstenmeer orientiert sich, wie oben dargestellt, zunächst am Schnittpunkt der Trasse mit der 12 sm-Grenze im Norden. Der im FEP 2023 festgelegte Trassenverlauf in der AWZ sieht einen Eintritt der Trasse über den Grenzkorridor N-III in die 12 sm-Zone vor.

Die Trasse von LanWin1 (NOR-12-1) verläuft im Genehmigungsabschnitt Küstenmeer dann vollständig parallel zum landesplanerisch festgestellten Korridor resultierend aus dem Raumordnungsverfahren "Seetrassen 2030". Dieser zunächst nur für zwei ONAS festgestellte Korridor wurde mit dem Schreiben des ArL Weser-Ems vom 30.11.2022 für weitere drei ONAS erweitert. Übrige, durch das LROP errichtete, räumliche Kapazitäten (Norderney-I und II-Korridore und Emsfahrwasserkorridor) sind bzw. werden bestmöglich ausgeschöpft. Damit beantragt die Vorhabenträgerin die Zulassung des Vorhabens in dem landesplanerisch festgestellten Korridor. Diese vorangegangene raumordnerische Abwägung, welche die umweltfachlichen Gesichtspunkte bereits berücksichtigt, ist gemäß § 4 Absatz 1 Nummer 3 ROG bei der Zulassungsentscheidung über das Vorhaben LanWin1 (NOR-12-1) zu beachten. Eine ergebnisoffene Abwägung großräumiger Trassenalternativen zur Querung des niedersächsischen Küstenmeers scheidet deshalb aus und stellt damit auch keine ernsthaft in Betracht kommende Alternative dar.

Gegenstand des Planfeststellungsverfahrens ist unter diesen Vorzeichen allein die Feintrassierung des Vorhabens innerhalb des landesplanerisch festgestellten Korridors. Diese Feintrassierung erfolgt anhand der beschriebenen Trassierungsgrundsätze (Kapitel 3.1 Trassierungsgrundsätze). Diesbezüglich hat sich TenneT für die Parallelführung von LanWin1 (NOR-12-1) in Bündelung mit den übrigen Vorhaben des Baltrum-Korridors entschieden. Diese treten unter Wahrung der durch den FEP vorgesehenen Parallelabstände über den Grenzkorridor N-III in das niedersächsische Küstenmeer ein (Kapitel 3.2 Trassenbeschreibung). Aufgrund der Bündelung ist im Küstenmeer keine Trassenführung sinnvoll.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 51 von 85

### 4.6. Nullvariante: Verzicht auf das geplante Vorhaben

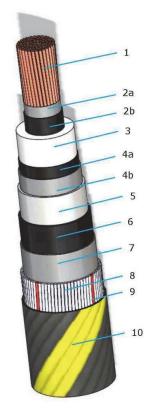
In Kapitel 1.3.1 wird die energiewirtschaftliche Begründung für die Realisierung des Vorhabens LanWin1 (NOR-12-1) dargelegt. Die Bestätigung von LanWin1 (NOR-12-1) im NEP 2023-2037/2045 und die Festlegungen des FEP 2023 verdeutlichen den Bedarf für die Umsetzung des Vorhabens durch TenneT vor der Zielkulisse von EnWG und WindSeeG. Die Realisierungsverantwortung im Sinne des gesetzlichen Auftrags zur bedarfsgerechten Optimierung und Verstärkung des Übertragungsnetzes liegt bei TenneT. Die – ggf. auch nur teilweise – Nicht-Umsetzung des Vorhabens stellt vor diesem Hintergrund keine in Betracht kommende Alternative dar.

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 52 von 85

### 5. Erläuterungen zur technischen Ausführung der Leitung


Die elektrische Energie wird von der Konverterplattform NOR-12-1 mittels HGÜ-Kabelsystem bis zur Landstation Unterweser transportiert. Die elektrischen Kenngrößen der Energiekabel betragen für das Projekt:

Nennübertragungsleistung 2000 MW

Nennspannung: Gleichspannung 525 kV
 max. Betriebsstrom: ca. 1.905 A Gleichstrom
 Isolierung: Extrudierter Kunststoff

#### 5.1. Seekabel

Der grundsätzliche Aufbau eines Seekabels ist Abbildung 13 zu entnehmen, in der beispielhaft der Aufbau eines extrudierten VPE-Seekabels (VPE = vernetztes Polyethylen) mit gewickeltem Kupferleiter dargestellt ist.



Diagrammatic Only - Not to scale

Abbildung 13: Beispielhafter Aufbau eines Seekabels, Legende siehe Tabelle 7 (Quelle: Prysmian Powerlink)



# Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 53 von 85

In Tabelle 7 sind der Aufbau (von innen nach außen) und die beispielhaften Kennwerte zu o. a. Kabel aufgelistet:

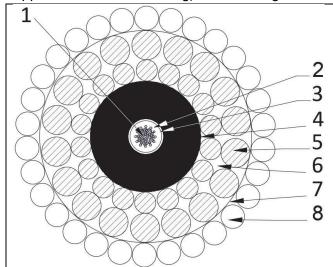
Tabelle 7: Aufbau des Seekabels am Beispiel eines VPE Kabels.

| Nr. | Bezeichnung                   | Beschreibung                                                                                                                 |
|-----|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1   | Leiter                        | mehrdrahtiger verseilter Leiter aus Kupfer, ca. 1.500 - 2.500 mm²                                                            |
| 2a  | Querwasserschutz              | halbleitendes Quellband, verhindert bei Beschädigung das<br>Eindringen von Wasser                                            |
| 2b  | innere Leitschicht            | halbleitendes, vernetztes Polyethylen (VPE), fest verbunden mit der Innenseite der Isolierung                                |
| 3   | Isolierung                    | Polymer-Dielektrikum, fest verbunden mit Leitschicht und Isolierung                                                          |
| 4a  | äußere Leitschicht            | halbleitendes, vernetztes Polyethylen, fest verbunden mit der Außenseite der Isolierung.                                     |
| 4b  | Längswasserschutz             | halbleitendes Quellband, verhindert bei Beschädigung das<br>Eindringen von Wasser                                            |
| 5   | Bleimantel                    | Bleilegierung als wasserdichter Einschluss des elektrischen Systems                                                          |
| 6   | Schichtenmantel               | Polyethylen (PE), Schutz des Bleimantels gegen<br>Beschädigung und Korrosion                                                 |
| 7   | Einbettung der Armierung      | Band zur Einbettung der Armierung                                                                                            |
| 8   | Armierung                     | verzinkter Rundstahldraht/Aluminium/PE als mechanischer<br>Schutz während der Herstellung, der Verlegung und des<br>Betriebs |
| 9   | Integrierte Lichtwellenleiter | Integrierte Lichtwellenleiter zur Zustandsmessung (optional)                                                                 |
| 10  | äußere Umhüllung              | doppellagiges Polypropylengarn, die äußere Lage mit permanenten spiralförmigen Markierungen zur Unterscheidung der Kabel     |

Der Kabeldurchmesser des Seekabels beträgt abhängig vom finalen Design (Aufbau, Armierungsart) voraussichtlich ca. 150 bis 190 mm mit einem spezifischen Gewicht von ca. 60-80 kg/m pro Leiter.



Projekt/Vorhaben:


NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 54 von 85

#### 5.2. Steuerkabel

Die technischen Einrichtungen auf der Konverterplattform und am NVP benötigen eine Kommunikationsverbindung zur Steuerung und Überwachung der elektrischen Schaltanlagen und der Konverterplattform und ihren Einrichtungen selbst. Hierzu wird eine Kabelverbindung mit Lichtwellenleitern (LWL) zur Übertragung der Steuer-, Schutz- und Reglungssignale sowie zur Kommunikation der Konverterplattform mit der Landstation installiert. Diese wird in der Regel durch ein separates See- und Landkabel ausgeführt.

Der grundsätzliche Aufbau des vorgesehenen LWL-Kabels für den Seebereich ist beispielhaft (hier doppelt armierte Bewehrung) der nachfolgenden Abbildung 14 (Vergrößerung) zu entnehmen.



- 1. Lichtwellenleiter (LWL)
- 2. Füllung (Gel)
- 3. Rohr (Edelstahl)
- 4. Außenmantel (Polyethylen)
- 5. Armierung (verzinkter Stahldraht)
- 6. Füllmaterial
- 7. Umhüllung (Polyester-Band)
- 8. Polypropylen-Garn

Abbildung 14: Lichtwellenleiterkabel (LWL-Kabel) für den Offshore-Bereich (Quelle: Ericsson)

Der Kabeldurchmesser des LWL-Kabels für den Offshore-Bereich beträgt abhängig vom finalen Design (Aufbau, Armierungsart) ca. 22 bis 35 mm mit einem spezifischen Gewicht von ca. 1,1 bis 2,5 kg/m.



Projekt/Vorhaben: Konvert

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 55 von 85

### 6. Beschreibung der Baumaßnahmen

Die Trasse LanWin1 (NOR-12-1) verläuft durch die 12 sm-Zone im Sublitoral nördlich Baltrums weitestgehend parallel zur bestehenden Europipe. Im Bereich der 20-m-Tiefenlinie kreuzt die Trasse die Europipe rechtwinklig (von Ost nach West) und läuft dann auf die Insel Baltrum zu. Nach der Unterquerung der Insel mittels HDD-Bohrung verlaufen die Trassen durch das Baltrumer Inselwatt und das Wattfahrwasser. Im Anschluss werden die Dornumer Balje, das Dornumer Watt und die Küstenschutzbereiche gequert. Die Trasse endet am Festland am Anlandungspunkt bei Dornumergrode im Landkreis Aurich. Hier wird der Landesschutzdeich ebenfalls mittels HDD unterbohrt. Der Anlandungspunkt befindet sich zwischen den beiden Deichlinien in der Gemeinde Dornum, bei Dornumergrode.

Die Kabelinstallationsmaßnahmen umfassen neben der Verlegung auf See und im Wattenmeer auch die Querungen von Insel und Deichen und erfolgen somit in unterschiedlichen Naturräumen. Hierdurch ergeben sich verschiedene Anforderungen an die Planung in den verschiedenen Bauabschnitten (siehe Tabelle 4).

### 6.1. Allgemeines

Auf See und im Wattenmeer werden die Kabel vorwiegend per Legeschiff bzw. Barge gebündelt und halboffen, d. h. in Spül- oder Vibrationsverfahren in den Boden eingebracht.

Der Verlegung geht erforderlichenfalls eine Kampfmitteluntersuchung (UXO-Survey) und potenzielle UXO-Räumung vorher. Die anschließende Verlegung per Schiff bzw. Barge wird in drei Phasen durchgeführt. In der ersten Phase wird die Installation vorbereitet, indem der Meeresboden von ggf. störenden Objekten im Kabelbereich bereinigt wird und etwaige Kreuzungen mit anderen Kabeln und Rohren vorbereitet werden. Anschließend wird in der zweiten Phase die Installation mithilfe eines technischen Werkzeuges durchgeführt. Darauf folgt in der letzten Phase die Nachbereitung, bei der die genaue Installationstiefe nachgewiesen wird. Details können der Anlage 3.2 Baubeschreibung Kabelinstallation entnommen werden.

Durch die Eingrabung des Kabels soll einerseits sichergestellt werden, dass Beschädigungen am Kabel, etwa durch Schiffsverkehr oder Fischerei, auf ein kalkulierbares Risiko begrenzt werden. Andererseits soll so verhindert werden, dass die während der Betriebsphase vom Kabel ausgehende Verlustwärme die obere, belebte Meeresbodenschicht unzulässig stark erwärmt. Entsprechend wird die Installationstiefe unter Berücksichtigung der Seebodenbeschaffenheit und deren möglichen Veränderungen gewählt. Die genaue Beschreibung der Installation in den Boden erfolgt in den jeweiligen Kapiteln.

Die in den Unterlagen dargestellten Verfahren und Geräte zur Kabelinstallation entsprechen einer typischen bautechnischen Lösung im Küsten- und Wattenmeer. Diese ist allerdings stark abhängig von den Geräten und dem Know-How des ausführenden Unternehmens. Eine verbindliche Festlegung der eingesetzten Geräte und Verfahren sowie der Richtung der Kabelinstallation im Watten- und Küstenmeer erfolgt erst in der Ausführungsplanung. Für die Eingriffsbilanzierung (siehe Anlage 8.1) wurden die bisherigen Verfahren als Referenz herangezogen.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 56 von 85

Zur Unterquerung der Deich- und Dünenkomplexe bei Dornumergrode und auf Baltrum bedarf es hingegen aufgrund der umweltrechtlichen und küstenschutztechnischen Belange eines geschlossenen Verfahrens. Angesichts der vergleichsweise geringen Umwelteingriffe, Flächeninanspruchnahmen und Bauzeiten hat sich die bautechnische Lösung des HDD-Verfahrens in diesem Raum bewährt und sich im Zuge der zunehmenden Erfahrung und der damit verbundenen Planungs- und Ausführungssicherheiten als Mittel der Wahl für derartige Anlandungsbohrungen etabliert. Auf Grundlage eines fachplanerischen Abwägungsprozesses wird dieses Verfahren auch für LanWin1 (NOR-12-1) für die genannten Bereiche gewählt.

Hierbei werden zunächst drei Bohrkanäle hergestellt, in die anschließend die vorgefertigten Kabelschutzrohrstränge eingezogen werden. Nach Fertigstellung der Kabelschutzrohranlagen werden später die Kabel im Rahmen der Maßnahmen zur Kabelinstallation in diese Kabelschutzrohre eingezogen und über Muffen miteinander verbunden.

Die Belegung der Kabelschutzrohre wird dann jeweils mit einem Energiekabel (s. Kapitel 5.1 Seekabel) sowie bei einem der drei Kabelschutzrohre zusätzlich mit dem Steuerkabel (LWL, s. Kapitel 5.2 Steuerkabel) erfolgen.

Die Bemessung der Bohrmaßnahmen, d. h. insbesondere die Anzahl, Lagen, Längen, Radien und Tiefen der Bohrungen sowie die Kabelschutzrohrdimensionen, orientiert sich hierbei an den örtlichen Gegebenheiten, den Anforderungen an den Umwelt- und Küstenschutz sowie den Grenzen der technischen Machbarkeit. Den Bohr- und Kabelinstallationsmaßnahmen gehen in Abhängigkeit der geplanten örtlichen Arbeiten teilweise unterschiedliche bauvorbereitende Maßnahmen voraus, wie insbesondere Geländevermessungen, Bodenuntersuchungen, Kampfmittelerkundungen und Herstellung der erforderlichen BE-Flächen.

Die Querung des Deichkomplexes und der Seegraswiesen bei Dornumergrode wird entsprechend mit drei parallelen HDD-Bohrungen erfolgen (hier als Lokation "Dornumergrode" bezeichnet). Die Insel Baltrum muss, anders als bei der Querung von Norderney, aufgrund der sensiblen Dünenbereiche einerseits und andererseits aufgrund der verkehrsbefreiten Situation auf der Insel, in einem Zuge unterquert werden. Eine detaillierte Beschreibung der geplanten HDD-Maßnahmen kann der Anlage 3.1 entnommen werden.

Für die Unterquerung des Landesschutzdeiches sowie der Insel Baltrum ist jeweils die Herstellung einer Rückspülleitung vorgesehen. Diese Rückspülleitungen sollen für alle fünf geplanten ONAS im Baltrum-Korridor genutzt werden. Daher sind die Rückspülleitungen bereits Teil der Anträge der ersten zwei Baltrum-ONAS BalWin4 (NOR-9-3) und BalWin3 (NOR-9-2), die sich bereits im fortgeschrittenen Verfahren befinden. Aufgrund der positiven Planungsprognose für die genannten Projekte werden die Rückspülleitungen als existent betrachtet und daher nicht erneut bilanziert (siehe Anlage 8.1).



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 57 von 85

Tabelle 8: Übersicht über die geplanten Installationstiefen und -arten in den Bauabschnitten

| Bauabschnitt<br>(Synonym) Bereich |                                                                                  | Verlegetiefe<br>(ca.)                  | Geplante<br>Installationsart |                                                                                                                                                                          |
|-----------------------------------|----------------------------------------------------------------------------------|----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                 | Offshore<br>(Sublitoral,<br>Tiefwasser)                                          | 8-14 m-Tiefenlinie bis<br>12 sm-Grenze | 2 m                          | Halboffene Bauweise (z. B. TROV), gebündelt verlegte Kabel                                                                                                               |
| 4                                 | Nearshore "Baltrum (Sublitoral, Nordstrand" bis Flachwasser) 8-14 m- Tiefenlinie |                                        | 3 m                          | Halboffene Bauweise (z. B.<br>"Stehendes Spülschwert"),<br>inklusive Muffenmontage am<br>Nordstrand, offene Bauweise<br>im Brandungsbereich,<br>Gebündelt verlegte Kabel |
|                                   |                                                                                  | BE-Fläche<br>"Am Nordstrand"           | 3 m                          | HDD-Austritt, offener<br>Leitungsgraben                                                                                                                                  |
| 3                                 | Baltrum<br>(Inselquerung)                                                        | HDD Baltrum                            | 1,5 m bis 38 (43) m          | Geschlossene Bauweise, einzeln verlegte Kabel                                                                                                                            |
|                                   |                                                                                  | BE-Fläche<br>"Baltrum-Süd"             | 1,5 m                        | HDD-Eintritt Offener Leitungsgraben                                                                                                                                      |
| 2                                 | Wattbereich<br>(Eulitoral)                                                       | Wattenmeer                             | 3 m                          | Halboffene Bauweise (z. B. Vibrations-schwert), ca. 400-500 m südl. HDD- Eintritt Baltrum-Süd offene Verlegung Gebündelt verlegte Kabel                                  |
|                                   |                                                                                  | BE-Fläche "Dornumer<br>Watt"           | 1,5 m                        | HDD-Austritt Offener Leitungsgraben                                                                                                                                      |
| 1                                 | Dornumergrode<br>(Deichquerung)                                                  | HDD Dornumergrode                      | 1,5 m bis 28 (33) m          | Geschlossene Bauweise, einzeln verlegte Kabel                                                                                                                            |
|                                   | (                                                                                | BE-Fläche<br>"Dornumergrode"           | 1,5 m                        | HDD-Eintritt Offener Leitungsgraben                                                                                                                                      |

### 6.2. Baujahre und Bauzeitenfenster

In der folgenden Tabelle 9 sind die geplanten Baujahre sowie die benötigten Bauzeitenfenster für die jeweiligen Baulokationen genannt.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 58 von 85

Tabelle 9: Baujahre und Bauzeitenfenster der geplanten Baumaßnahmen

| Art der Baustelle                                                                             | Geplantes Baujahr * | Geplantes Bauzeitenfenster                               |
|-----------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------|
| Einrichtung der BE-Fläche binnendeichs                                                        | 2024, 2027          | 1. Januar bis 29. Februar,<br>15. Juli bis 30. September |
| Herstellung der Dalbenreihe Baltrum-Süd (nachrichtlich)                                       | 2024 (2025)         | 15. Juli bis 30. September                               |
| Leerrohrmitnahme für 1. HDD im<br>Anlandungsbereich über BalWin3<br>(NOR-9-2) (nachrichtlich) | 2024                | 1. Juni bis 30. September                                |
| Erstellung der Rückspülleitung im Anlandungsbereich (nachrichtlich)                           | 2024                | 1. Juni bis 30. September                                |
| Erstellung der 2. und 3. HDD im Anlandungsbereich                                             | 2028                | 1. Juni bis 30. September                                |
| Wattkabelverlegung                                                                            | 2029                | 15. Juli bis 30. September                               |
| Erstellung der drei HDD im<br>Inselbereich (inkl.<br>Rückspülleitung)                         | 2025, 2026          | 1. April bis 31. Oktober                                 |
| Flachwasserkabelverlegung                                                                     | 2028                | 1. Juni bis 30. September                                |
| Tiefwasserkabelverlegung innerhalb des Nationalparks                                          | 2028                | 1. Mai bis 30. September                                 |
| Kabelverlegung außerhalb des<br>Nationalparks                                                 | 2028                | Ganzjährig möglich                                       |

<sup>\*</sup>vorbehaltlich der Abstimmungen mit den ausführenden Unternehmen

Wesentliche Teile der geplanten Baumaßnahmen fallen in Bereiche von Schutzgebieten des Nationalparks Niedersächsisches Wattenmeer. Zum Schutz von Brut- und Rastvögeln sowie zum Deichschutz sehen die Behörden daher als mögliches Bauzeitenfenster grundsätzlich den Zeitraum von Juli bis ein- schließlich September vor. Da eine Durchführung aller genannten Baumaßnahmen, aber auch die der einzelnen HDD-Bohrungen je Lokation, in einem Bauzeitenfenster technisch nicht machbar ist, sollen die verschiedenen Maßnahmen auf mehrere Jahre aufgeteilt werden. Die Reihenfolge der Baumaßnahmen richtet sich dabei im Wesentlichen nach den technischen Erfordernissen und der Vereinbarkeit mit anderen geplanten Vorhaben im Raum Wattenmeer und Baltrum. Zur zeitlichen und logistischen Entlastung sollen bauvorbereitende Maßnahmen nach Möglichkeit bereits in abzustimmenden Zeiträumen außerhalb. h. vor Beginn der Bauzeitenfenster, durchgeführt Bauzeitenbeschränkungen sowie weitere Maßnahmen zur Vermeidung und Minimierung von Eingriffen in die Natur und Landschaft während der Bauarbeiten sind in landschaftspflegerischen Maßnahmen (siehe Anlage 8.2) festgelegt und werden bei der Bauausführung entsprechend beachtet.

Allerdings muss das Bauzeitenfenster aus technischen Gründen insbesondere bei den jeweiligen HDD-Bohrungen gegenüber dem bisher für vergleichbare Verfahren (320 kV-Leitungen) festgelegten Zeitraum (15.07. – 30.09.) gemäß Tabelle 9 aufgeweitet werden (siehe Kapitel 2.2).



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 59 von 85

Zur besseren Übersicht soll nachrichtlich in der folgenden Tabelle 10 eine Gesamtschau aller Baustellen im Bereich des Baltrum-Korridors dargestellt werden. Dies stellt einen Planungsstand (Stand: Q3/2023) dar und kann Änderungen unterliegen. Hier sind die Begriffe Nearshore- bzw. Offshorekabel jeweils gleichbedeutend mit der Flachwasser- bzw. Tiefwasserkabelverlegung.

Tabelle 10: Nachrichtliche Darstellung der geplanten Baustellenjahre aller ONAS über Baltrum.

| Baujahr | BalWin4<br>NOR-9-3                                               | BalWin3<br>NOR-9-2                                                              | LanWin1<br>NOR-12-1                                    | LanWin4<br>NOR-11-2                        | LanWin5<br>NOR-13-1                        |  |  |
|---------|------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------|--|--|
| 2024    | Einrichtung BE-<br>Fläche<br>Dornumergrode,<br>HDD Deich         | Einrichtung BE-<br>Fläche<br>Dornumergrode,<br>HDD Deich<br>Rückspülleitung Anl | HDD Deich<br>(Teil 1)                                  |                                            | NOK-13-1                                   |  |  |
| 2025    | HDD Baltrum                                                      | HDD Baltrum                                                                     | HDD Baltrum<br>(Teil1)                                 |                                            |                                            |  |  |
|         | Rückspülleitung Baltrum                                          |                                                                                 |                                                        |                                            |                                            |  |  |
| 2026    | Wattkabel                                                        |                                                                                 | HDD Baltrum<br>(Teil2)                                 | HDD Baltrum                                | HDD Baltrum                                |  |  |
| 2027    | Nearshore- & Watt-, Nearshore-,<br>Offshorekabel & Offshorekabel |                                                                                 | Einrichtung BE-<br>Fläche<br>Dornumergrode             | Einrichtung BE-<br>Fläche<br>Dornumergrode | Einrichtung BE-<br>Fläche<br>Dornumergrode |  |  |
| 2028    | 028 Offshorekabel Offshorekabel                                  |                                                                                 | HDD Deich<br>(Teil 2)<br>Nearshore- &<br>Offshorekabel | HDD Deich                                  | HDD Deich                                  |  |  |
| 2029    | 2029                                                             |                                                                                 | Wattkabel                                              | Nearshore- &<br>Offshorekabel              | Nearshore- &<br>Offshorekabel              |  |  |
| 2030    |                                                                  |                                                                                 |                                                        | Wattkabel                                  | Wattkabel                                  |  |  |

#### 6.3. HDD Dornumergrode

Zur Unterquerung des Hauptdeichs, des Sommerdeichs sowie der Salz- und der Seegraswiesen bei Dornumergrode sollen für LanWin1 (NOR-12-1) drei parallel angeordnete HDD-Bohrungen mit Längen von jeweils ca. 1.300 m, inklusive des Einzugs von Kabelschutzrohren durchgeführt werden ("HDD Dornumergrode"). Darüber hinaus soll eine Rückspülleitung mit einer vergleichbaren Länge westlich parallel errichtet werden. Diese Rückspülleitung wird voraussichtlich bereits im Rahmen des Planfeststellungsverfahrens von BalWin3 (NOR-9-2) beschieden und hergestellt.

Für die HDD-Bohrungen soll auf der Bohrseite südlich des Hauptdeichs eine BE-Fläche "Dornumergrode" hergestellt werden. Diese soll über die HDD-Maßnahmen im Bereich der Anlandung hinaus sowohl auch für den späteren Kabeleinzug, als auch für das Schweißen der Kabelschutzrohre, die für die Unterquerung von Baltrum dienen, genutzt werden. Die Zufahrt kann über öffentliche Straßen sowie einen privaten Weg und die zu errichtende Baustraße erfolgen. Auf der Zielseite im Wattenmeer soll temporär für die Dauer der HDD-Maßnahmen die Baustelleinrichtungsfläche "Dornumer Watt" hergestellt werden. Diese besteht im Wesentlichen aus einem Arbeitsponton, der am geplanten Bohraustrittspunkt platziert werden soll und als



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 60 von 85

Arbeitsebene für die erforderlichen Arbeiten dient. Um den geplanten Austrittspunkt herum soll eine temporäre Baugrubenumschließung errichtet werden, die einen Austritt der bei der HDD-Bohrung anfallenden Bohrspülung in das umgebende Watt verhindert. Außerdem soll zur bodenschonenden Versorgung des Arbeitspontons mit Material und Geräten eine sog. Wattfähre eingerichtet werden, die aus einem fixierten Anlegeponton am Rand des Priels "Dornumer Balje" und einem mobilen flachgängigen Fährponton besteht (siehe Abbildung 15). Die Versorgung der BE-Fläche "Dornumer Watt" am Bohraustrittspunkt mit Material und Geräten soll im Wesentlichen über den beschriebenen Wasserweg und die Wattfähre erfolgen. Händische Materialtransporte und Personenbeförderungen, z. B. im Fall von Schichtwechseln, sollen allerdings aufgrund der Tide-Abhängigkeit der Wattfähre nach Möglichkeit auch auf einer mit der naturschutzfachlichen Baubegleitung abzustimmenden Zuwegung von der Landseite durch das Dornumer Watt erfolgen.

Das eingesetzte HDD-Verfahren kann grundsätzlich in die drei Arbeitsschritte "Pilotbohrung", "Aufweitbohrung" und "Einziehvorgang" unterteilt werden (siehe Abbildung 16). Im ersten Schritt, der Pilotbohrung, soll zunächst ein relativ dünnes Pilotbohrgestänge entlang der geplanten Bohrlinie durch das Erdreich bis zum Austrittspunkt geschoben werden. Dabei wird der Boden im Wesentlichen hydraulisch mittels einer durch das Bohrgestänge geförderten und am Bohrkopf austretenden Bohrspülung abgebaut. Durch die Druckdifferenz (Spülungsdruck) wird der abgebaute Boden mit der Bohrspülung kontinuierlich durch den Bohrkanal zurück zum Eintrittspunkt abtransportiert. Dort soll die Bohrspülung in einer Separationsanlage vom abgebauten Bohrklein getrennt und dem Spülkreislauf wieder zugeführt werden. Je nach eingesetzter Messtechnik ist es erforderlich, die Bohrtrasse zur Ortung des Bohrkopfes während der Bohrtätigkeit zu begehen.

Nach dem Durchstich am Austrittspunkt soll im zweiten Arbeitsschritt, der Aufweitbohrung, zunächst ein Aufweitkopf (Räumer) am Gestänge montiert werden, der dem Zieldurchmesser des Bohrkanals entspricht. Anschließend soll der Bohrstrang zurückgezogen und der Bohrkanal hiermit auf den Zieldurchmesser aufgeweitet werden. Zur Ermöglichung des anschließenden Kabelschutzrohreinzugs soll der Durchmesser des Bohrkanals mindestens dem 1,3-fachen des Kabelschutzrohrdurchmessers entsprechen, d. h. hier ca. 600 mm. Ein wesentlicher Teil der Bohrspülung fällt hierbei typischerweise am Austrittspunkt an, der in der Baugrubenumschließung aufgefangen und über eine temporär oberirdisch ausgelegte Rückspülleitung zur Separationsanlage am Eintrittspunkt gepumpt werden soll.

Nach Fertigstellung des Bohrkanals soll im dritten Arbeitsschritt, dem Einziehvorgang, ein vorgefertigter Kabelschutzrohrstrang zum entsprechenden Austrittspunkt geschleppt und in den hergestellten Bohrkanal eingezogen werden. Zur Herstellung der Kabelschutzrohrstränge soll für alle HDD-Maßnahmen eine östlich der binnenseitigen BE-Fläche gelegene Schweißbahn genutzt werden. Der Transport zu den Austrittspunkten soll dann über den Wasserweg erfolgen. Der Einziehvorgang soll mit denselben Geräten und in gleicher Arbeitsrichtung wie der Aufweitvorgang erfolgen.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 61 von 85



Abbildung 15: Luftbild einer exemplarischen Wasserbaustelle bei Hilgenriedersiel mit dem Arbeitsponton am Bohraustrittspunkt im Hintergrund und dem Anlege- und Fährponton am Riffgat- Fahrwasser im Vordergrund (Quelle: TenneT)

Während bzw. nach dem Kabelschutzrohreinzug soll zur Vermeidung von etwaigen Setzungen oder Sickerlinien der verbleibende Ringraum zwischen dem Kabelschutzrohr und dem Bohrkanal im Bereich des Hauptdeichs durch das Einpressen einer umweltverträglichen Suspension (Dämmer) verdämmt werden. Anschließend sollen Qualitätsprüfungen durchgeführt, die Kabelschutzrohre mit Süßwasser befüllt, die Rohrenden mit Blinddeckeln druckwasserdicht verschlossen und bis zum Kabeleinzug in 1,0 m - 1,5 m Tiefe abgelegt und ballastiert werden. Im Rahmen der Wattkabelinstallation sollen die Kabelschutzrohrenden für den Kabeleinzug erneut freigelegt und nach Abschluss der entsprechenden Arbeiten in 1,5 m Tiefe abgelegt werden. Um sicherzustellen, dass die naturschutzfachlichen Belange berücksichtigt werden, werden alle Bauarbeiten u. a. von einer naturschutzfachlichen Baubegleitung betreut.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 62 von 85

Genauere Informationen zur Durchführung der HDD-Bohrungen finden sich in Anlage 3.1 Baubeschreibung HDD.

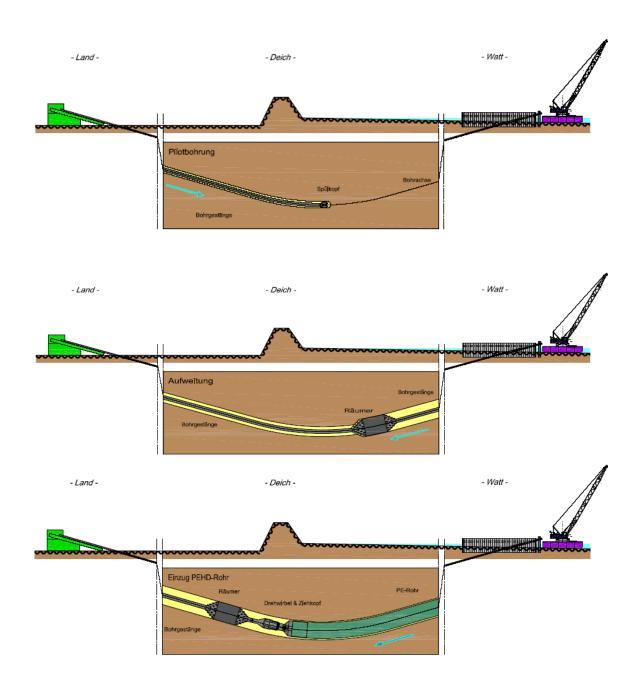



Abbildung 16: Arbeitsschritte des geplanten Horizontalbohrverfahrens (HDD).

Oben: Pilotbohrung, Mitte: Aufweitbohrung, Unten: Einziehvorgang



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 63 von 85

#### 6.4. HDD Baltrum

Der zweite Bohrabschnitt führt vom Baltrumer Inselwatt ausgehend unterhalb der Insel Baltrum bis zur Bohraustrittsfläche am Nordstrand von Baltrum. Diese Bohrungen dienen der Unterquerung von Dünen und schützenwerten Flächen sowie der Insel Baltrum.

Die Eintrittspunkte liegen im Wattbereich ca. 500 m südlich des Küstensaums von Baltrum. Die Austrittspunkte der Bohrungen liegen auf der BE-Fläche am Nordstrand von Baltrum.

Das Gelände unmittelbar südlich anschließend an die Baustelleneinrichtungsfläche sowie die Schutzdünen gehören zur Schutzzone 1 und dürfen allenfalls in Abstimmung mit der Naturschutzfachlichen Baubegleitung betreten werden.

Die Lage und Richtung der HDD-Bohrungen ist in den beigefügten Übersichts- und Lageplänen dargestellt.

Alle im Wattbereich erforderlichen Materialien und Geräte sollten bei Flut mit schwimmenden Geräten vom Hafen Norddeich/Wilhelmshaven/Emden aus so bis zu den Anlegepontons transportiert werden, dass ein Weitertransport bei anstehendem Hochwasser in den Baustellenbereich möglich ist. Außerhalb der Hochwasserzeiten ist der Betrieb der Fährverbindung nur gestattet, wenn ein Aufsetzen des Fährpontons bei der Überfahrt auf den Wattboden ausgeschlossen werden kann (10 cm Wassertiefe unter dem Rumpf dürfen nicht unterschritten werden). Die Auslegung des Fährpontons muss aus diesem Grund so beschaffen sein, dass es mit starker Beladung schon bei niedrigen Wasserständen schwimmfähig ist. Nur so kann eine optimale Ausnutzung der Tidehochwasser-Zeiten erfolgen.

Die Zuwegung vom Anlegeponton zu der Arbeitsfläche "Baltrum-Süd" zur Querung der Insel Baltrum hat über einen vom Unternehmer zu erstellenden Steg/Fußgängerbrücke zu erfolgen, welcher ebenfalls hochwassersicher auszubilden ist. Dieser soll oberhalb der zu errichtenden Dalben angebracht werden. Hierdurch werden Personalwechsel und fußläufiger Personenverkehr auch tideunabhängig ermöglicht. An diesem Steg/Fußgängerbrücke sollen auch die Speise- und Förderleitung für die HDD-Bohrung angebracht werden. Alternativ können diese – bei ausreichender Tragfähigkeit – auch auf den Steg/Fußgängerbrücke gelegt werden.

Für den Transport der Kabelschutzrohre vom Festland zu den Austrittspunkten auf Baltrum ist vorgesehen, diese auf halben Weg im Bereich der Dornumer Balje zwischenzuparken, um einen entsprechenden Zeitpunkt der Tide abzupassen und die Rohre dann zu den Austrittspunkten am Nordstrand zu schleppen. Der genaue Ort der Zwischenlagerung und die damit verbundenen Maßnahmen sind noch festzulegen.

Nach Beendigung der Baumaßnahme werden alle im Wattbereich errichteten BE-Einrichtungen vollständig wieder entfernt. Einzig die Dalbenreihe bleibt für die Folgeprojekte bis voraussichtlich 2026 bestehen.

Der geplante Bauablauf ist dabei grundsätzlich analog zu dem bei Dornumergrode (siehe Kapitel 6.3 HDD Dornumergrode).



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 64 von 85



Abbildung 17: Beispielhafte Wasserbaustelle im Norderneyer Inselwatt (Quelle: MOLL-prd)

### 6.5. Kabelinstallation von Dornumergrode bis Baltrum

Die Kabelinstallation im Wattenmeer zwischen den mittels HDD installierten Kabelschutzrohren "Dornumer Watt" und "Baltrum-Süd" soll als Kabelbündel ohne Verbindungsmuffen realisiert werden. Das Kabelbündel besteht aus zwei Energiekabeln, einem metallischen Rückleiter und einem LWL-Kabel zur Informationsübertragung.

Die Kabel werden im Wattenmeer zwischen Dornumergrode und Baltrum überwiegend in halboffener Bauweise verlegt und beidseitig in die hergestellten Kabelschutzrohre eingezogen. Allerdings kann bei der Wattkabelverlegung die Lokation des Bohreintritts Baltrum-Süd nicht gänzlich erreicht werden. Dies begründet sich einerseits durch die niedrigen Wasserstände in diesem Bereich und andererseits durch das Gewicht der drei Leiter auf der Verlegeeinheit. Dies führt dazu, dass im Vergleich zu den Norderney-Projekten eine größere Distanz von 400-500 m in offener Kabelverlegung (z.B. mittels Wattbagger) stattfinden muss. In Dornumergrode wird eine Übergangsmuffe zum Landkabel hergestellt und die Kabel werden im offenen Leitungsgraben an diese angebunden.

Um das Kabelbündel im Watt zu installieren, müssen zunächst die in 1,0 - 1,5 m Tiefe lagernden Kabelschutzrohre im Watt freigelegt und deren Versiegelung geöffnet werden. Weiterhin wird auf der Festlandseite ein kurzer Graben bis zum Übergangspunkt/zur Muffengrube des Landkabels freigelegt.

Die Kabel, die für die gesamte Strecke zwischen der Übergangsmuffe zum Landkabel in Dornumergrode und der BE-Fläche "Nordstrand Baltrum" benötigt werden, werden auf eine Installationsbarge geladen. Die beladene Barge fährt in das Fahrwasser Baltrumer Wattfahrwasser ein und begibt sich zur Trasse. Von dort aus fährt die Barge soweit wie möglich nach Norden in Richtung HDD-Eintritt "Baltrum-Süd" und lässt sich anschließend trockenfallen. Dies wird aufgrund



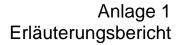
Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 65 von 85

des voraussichtlichen Tiefganges der Verlegeeinheit sowie der niedrigen Wasserstände voraussichtlich ca. 400-500 m vor HDD-Eintritt "Baltrum-Süd" sein.

Von dort aus werden die Kabel abgespult und über Rollböcke zum HDD-Eintritt gezogen. Sobald diese freiliegen, beginnt der Kabeleinzug. Aufgrund der langen Bohrstrecke ist es ggf. nötig, auf einem zusätzlichen kleinen Ponton im Watt einen Tensioner zu positionieren, der den Kabeleinzug unterstützt und Zugkraft aus dem Kabel nimmt.


Nach dem Kabeleinzug wird das Kabelschutzrohr sowie das eingezogene Kabel am Nordstrand wieder in den Boden eingebracht, bis im Rahmen der Nearshore-Kabelinstallation das Wattkabel mit dem Nearshorekabel mittels Muffen verbunden wird.

Im Wattbereich wird nun auf der Strecke vom HDD-Eintritt "Baltrum-Süd" bis zur Position der trockengefallenen Verlegeeinheit das Kabel mittels offener Bauweise in den Boden eingebracht.

Anschließend wird das übrige Wattkabel mittels halboffener Verlegung im Bündel in den Boden eingebracht. Nach aktuellem Stand kommt hierfür das schiffsgestützte Vibrationsverfahren zum Einsatz (siehe Abbildung 18). Aufgrund der Vibration kann das Schwert mit relativ geringem Widerstand durch den Meeresboden gezogen werden. Während dieses Prozesses läuft das Kabelbündel geschützt durch das Vibrationsschwert und wird auf der erforderlichen Tiefe abgelegt. Der dabei erzeugte Schlitz fällt üblicherweise nach dem Passieren des Vibrationsschwertes in sich zusammen. Die Verlegung erfolgt zyklusartig in Abschnitten ausschließlich wenn ein ausreichender Wasserstand vorliegt, wohingegen die Barge bei Ebbe trockenfällt. Die Fortbewegung der Barge erfolgt im Watt mithilfe von Zugankern und endet kurz vor den Austrittspunkten der Anlandungsbohrungen.

Wenn der HDD-Austritt "Dornumer Watt" erreicht ist, werden die Kabel in einer engen Kurve auf der Trasse Richtung Norden abgespult (siehe Abbildung 19). Von dort werden die Kabel mit Hilfe von Winden durch die drei installierten Kabelschutzrohre bis hinter den Deich bei Dornumergrode gezogen und dort in den vorher ausgehobenen Graben bis zum Übergabepunkt/zur Muffengrube zum Landkabel verlegt. Das LWL-Kabel wird dabei mit einem der Energiekabel gemeinsam eingezogen.

Eine genaue Beschreibung des Installationsvorgangs erfolgt in Anlage 3.2 Baubeschreibung Kabelinstallation.





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 66 von 85



Abbildung 18: Kabelverlegung im Watt mit Hilfe eines Vibrationsschwertes (Quelle: eos projekt)



Abbildung 19: Auslegung der Kabelschleife (Quelle: eos projekt)



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 - Unterweser

**Abschnitt Seetrasse** 

Seite 67 von 85

#### 6.6. Kabelinstallation von Baltrum bis zur 8-14 m-Tiefenlinie

Im Rahmen der Nearshore-Kabelinstallation werden die Kabel am Nordstrand von Baltrum mit den Wattkabeln über eine herzustellende Verbindungsmuffe verbunden. Am Strand wird die Kabelverlegung überwiegend in offener und auf See in halboffener Bauweise erfolgen. Im brandungsbeeinflussten Übergangsbereich werden die Kabel voraussichtlich in offener Bauweise installiert. An der 8-14 m-Tiefenlinie muss voraussichtlich ein Wechsel des Verlegeschiffs und des Installationstools erfolgen, sodass hier voraussichtlich eine weitere Verbindungsmuffe erforderlich ist.

Schiffe zur Installation von Seekabeln im Bereich der offenen See benötigen Mindestwassertiefen um operieren zu können (aufgrund des Tiefgangs des Installationsschiffs sowie einer entsprechenden Wassersäule zwischen Meeresgrund und Kiel, um eine ausreichende Anströmung des Steuer- und Antriebssystems zu gewährleisten). Zudem ist der Bereich zwischen Baltrum bis zur 8-14 m-Tiefenlinie stark morphodynamisch und benötigt daher spezielle Installationstechniken. Diese Anforderungen führen voraussichtlich der Notwendigkeit eines Installationssystemwechsels im Bereich der 8-14 m-Tiefenlinie.

Für die Installation im Bereich von Baltrum bis zur 8-14 m-Tiefenlinie müssen zunächst die Kabelenden des bereits in die Kabelschutzrohre unter Baltrum eingezogenen Wattkabels am Nordstrand von Baltrum freigelegt werden, um die Nearshore-Kabel mit dem Wattkabel mittels Muffen zu verbinden. Im Strandbereich wird ein 3 m tiefer Kabelgraben erstellt. In diesem wird das Kabelsystem anschließend abgelegt, um die Kabel und die Schutzrohre auf die Mindestverlegetiefe von 3 m zu bringen. Zur Stabilisierung der Grabenböschung und zur Zurückhaltung des Grundwassers wird bei den Arbeiten im Strandbereich eine Wasserhaltung vorgenommen.

Im Brandungsbereich (zwischen Baggergraben und Einsatzpunkt des Spülschwertes) werden die Kabel mit einer Spüllanze (oder vergleichbarem Gerät, wie z. B. Airlift) auf die erforderliche Tiefe gebracht, falls dies erforderlich ist.

Im Bereich von der Brandungszone nördlich von Baltrum bis zur Muffe im Bereich der 8-14 m-Tiefenlinie ist die Verlegung des Kabelbündels grundsätzlich im so genannten Einspülverfahren vorgesehen. Zum Einsatz kommt hier eine Kabelverlegebarge, die die Kabel z.B. mit Hilfe eines "Stehenden Spülschwerts" eingräbt.

Grundsätzlich sind zwei verschiedene Verfahren zur Installation des Kabelsystems in diesem Abschnitt möglich, die auch in der Anlage 3.2 Baubeschreibung Kabelinstallation erläutert werden.

#### 1. Variante (vom Strand Richtung See):

Bei dieser Variante wurden die Kabel bereits vorab auf die Barge verladen (z. B. in einem Hafen oder der Kabelfabrik). Die Barge fällt vor der Sandbank ca. 350 m von der Muffenposition entfernt trocken. Die Kabel werden direkt von der Barge über den Strandabschnitt nacheinander bis zur BE-Fläche am Nordstrand Baltrum für das Erstellen der Muffe abgelegt. Nachdem die Kabel positioniert sind, werden diese in das Spülschwert eingelegt und die Barge beginnt mit der Verlegung der Kabel in seewärtiger Richtung. Im Strandbereich werden die Kabel auf einer Distanz von ca. 350 m mittels offener Verlegung in den Boden eingebracht.



## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 68 von 85

#### 2. Variante (von seewärts Richtung Strand):

Die Verlegerichtung von Nord nach Süd kann unterschiedliche Gründe haben. Zum einem könnte durch einen zu hohen Tiefgang der Barge bei voller Beladung der Zielpunkt am Strand nicht erreicht und die Kabel nicht sicher an Land gebracht werden. Zum anderen könnte womöglich die Verlegung zu einem Zeitpunkt stattfinden, an dem es nicht möglich ist, auf der BE-Fläche am Nordstrand Baltrum zu arbeiten. Bei dieser Variante positioniert sich die Barge am nahemöglichsten Punkt am Strand. Die Kabel werden einzeln abgespult und temporär auf dem Seeboden abgelegt. Anschließend werden diese einzeln mittels Wattbagger in ihre endgültige Position verbracht.

In Bauabschnitt 4 sind 3 m Verlegetiefe vorgesehen. Die Verlegetiefe wird in der Regel bereits nach wenigen Metern durch Absenken des Spülschwertes erreicht. Die im Vergleich zum Tiefwasser größere Verlegetiefe im Nearshorebereich ist notwendig, da die Gezeiten und Strömungen im Flachwasser vor der Insel wesentlich stärker wirken. Durch die tiefere Lage des Kabels wird der in diesem Bereich ansonsten bestehenden Gefahr des Freispülens während des Betriebs begegnet.

Die Positionierung und Fortbewegung auf der Seetrasse erfolgt mit einem Zuganker und den eigenen Antrieben. Abhängig von den Wetterbedingungen und der vorherrschenden Strömung können auch Seitenanker eingesetzt werden. Das Setzen der Seitenanker soll möglichst sedimentschonend durchgeführt werden, um eine zusätzliche Beeinträchtigung des Sediments und der bodenlebenden Fauna zu minimieren.

Beim Einsatz der Seitenanker kann es zu Lageüberschneidungen mit vorhandenen Schifffahrtszeichen, wie z. B. Navigations-Tonnen kommen. Hier ist eine enge Abstimmung mit dem Wasserschifffahrtsamt erforderlich, um einen reibungsfreien Ablauf der Kabelinstallation zu gewährleisen. An der 8-14 m-Tiefenlinie endet die simultane Verlegung mit Barge und Spülschwert am Übergang zur Offshore-Kabelverlegung. Die Kabel werden geschnitten, abgedichtet und mit einem Seil plus Senkkörper zur besseren Wiederaufnahme versehen. Die letzten 30 Meter des Kabels und des Seils werden flach in reduzierter Installationstiefe im Meeresboden verlegt, damit diese zur Muffenherstellung und weiteren Installation mit dem folgenden Abschnitt leichter aufgenommen werden können.

Während der Verlegung sehen die Planungen den Einsatz eines Personal- und Versorgungsschiffes vor, sofern die Unterbringung nicht auf den Verlegeschiffen möglich ist. Es sollen Aufenthalts- und Büroräume für Besatzung und Bauaufsicht eingerichtet werden.

#### 6.7. Kabelinstallation von der 8-14 m-Tiefenlinie bis zur 12 sm-Grenze

Für den Bereich von der 12 sm-Grenze bis zur 8-14 m-Tiefenlinie erfolgt die Installation mit einem Offshore-Kabelinstallationsschiff (siehe Abbildung 20). Dieses ist, je nach eingesetztem Schiff, mit einem oder mehreren Kabeltanks ausgestattet, in denen die Kabel lagern. Von diesen werden die Energiekabel sowie das LWL-Kabel gebündelt und kontrolliert in den Meeresboden installiert. Bevor die eigentliche Kabelverlegung beginnt, wird die Trasse erst von Hindernissen wie alten Kabeln, Fischernetzen oder Ankerketten befreit



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 69 von 85



Abbildung 20: Verlegeschiff Topaz Installer (Quelle: VSMC)

Installationsrichtung: Bei der Installation von der 8-14 m-Tiefenlinie zur Konverterplattform nimmt das Installationsschiff an der 8-14 m-Tiefenlinie die bis dorthin verlegten Kabel auf (vgl. Kapitel 6.6 Kabelinstallation von Baltrum bis zur 8-14 m-Tiefenlinie). An Bord werden die geborgenen Kabel mit den an Bord befindlichen Kabeln mithilfe einer Muffe verbunden. Anschließend wird die Muffe mit den verbundenen Kabeln auf den Meeresboden abgelegt und auf die entsprechende Installationstiefe gebracht. Danach erfolgt die weitere Installation des Kabelsystems in Richtung 12 sm-Grenze. Grundsätzlich ist aber auch die entgegengesetzte Installationsrichtung möglich. Die Richtung wird erst im Rahmen der Bauausführungsplanung festgelegt.

Installationsart: Die Installation kann grundsätzlich auf zwei Arten erfolgen: Beim Simultaneous Lay and Burial-Verfahren (SLB) wird das Kabel direkt auf die gewünschte Tiefe im Meeresboden eingebracht. Hierfür wird z. B. ein Spülschlitten – abhängig vom Auftragnehmer – genutzt, den das Schiff mitführt. Beim Post Lay Burial-Verfahren (PLB) wird das Kabel zuerst vom Verlegeschiff auf dem Meeresboden abgelegt und erst mit zeitlichem Abstand durch ein zweites Schiff mit einem Spülschlitten oder durch ein Unterwassereingrabegerät (trenching remotely operated vehicle, TROV) in den Boden eingebracht.

Installationstiefe: Auf der gesamten Strecke bis zur 12 sm-Grenze beträgt die Verlegetiefe etwa 2 m. Hierdurch wird sichergestellt, dass in 30 cm Tiefe die Temperatur des Bodens während des Kabelbetriebs um nicht mehr als 2 Kelvin steigt (2 K-Kriterium). Zudem wird das Risiko einer Kabelbeschädigung begrenzt. Abhängig von der Tragekapazität des Verlegeschiffs kann es sein, dass nicht die gesamte Kabellänge in einem Zuge verlegt werden kann und somit Muffen gesetzt werden müssen, um einzelne Kabelstücke miteinander zu verbinden.



## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 70 von 85

### 7. Immissionen und ähnliche Wirkungen

#### 7.1. Schallimmissionen

In Anlage 11.2 wird der vom geplanten Vorhaben emittierte Schall durch die Bohrtätigkeiten im Rahmen der HDD-Maßnahmen auf Baltrum und in Dornumergrode im Detail betrachtet und bewertet. Ziel der Untersuchungen war es, die Immissionen in der Nachbarschaft der Baustellen beim Betrieb der Bohranlage sowie der Zusatzgeräte zu ermitteln und mit den anzuwendenden Immissionsrichtwerten zu vergleichen. Berücksichtigt wurde neben der einzelnen Betrachtung des hier beantragten Vorhabens auch die ggf. zeitgleiche Umsetzung des geplanten und benachbarten Vorhaben. Im Folgenden werden die dort ermittelten Ergebnisse zusammenfassend dargestellt.

Bei beiden Baustellen (BE-Fläche "Dornumergrode" sowie BE-Fläche "Baltrum-Süd) können die in der jeweiligen Nachbarschaft anzuwendenden Immissionsrichtwerte mit den angenommenen, realistischen Gerätekonstellationen sowohl am Tage als auch in der Nacht eingehalten werden. Im Bereich der Anlandung sind hierfür entsprechende Schallschutzmaßnahmen mit einer Höhe von 5,2 m an der West-, Süd- und Ostseite der BE-Fläche notwendig.

Die zugrundeliegenden Gerätekonstellationen und abgeleiteten Schallschutzmaßnahmen stellen nur einen Vorschlag dar. Das Bauunternehmen wird dazu verpflichtet, die aus dem Gutachten resultierenden Vorgaben umzusetzen bzw. im Fall relevanter Abweichungen, wie insbesondere einer anderen Gerätekonstellation oder Auslegung der Schallschutzmaßnamen, rechtzeitig vor Baubeginn die Einhaltung der Immissionsrichtwerte gutachterlich nachzuweisen.

### 7.2. Elektrische und magnetische Felder

In Anlage 11.1 werden die vom geplanten Vorhaben emittierten elektrischen und magnetischen Felder im Detail betrachtet und bewertet. Im Folgenden werden die dort ermittelten Ergebnisse zusammenfassend dargestellt.

#### 7.2.1. Elektrische Felder

Das Kabelsystem LanWin1 (NOR-12-1) soll mittels geschirmten Kabeln errichtet werden. Es treten daher keine elektrischen Felder außerhalb des Kabels auf.

#### 7.2.2. Magnetische Felder

Es ist festzuhalten, dass für den Genehmigungsabschnitt Küstenmeer aufgrund der Mindestüberdeckung von 1,5 m keine Immissionsorte (dauerhafter oder vorübergehender Aufenthalt von Menschen im Einwirkungsbereich von 1,0 m) vorhanden sind. Auch Minimierungsorte (Orte im Einwirkungsbereich von 15 m, die nicht nur für den vorübergehenden Aufenthalt von Menschen bestimmt sind) können aufgrund der Lage des Gleichstromsystems innerhalb der sublitoralen und eulitoralen Nordsee ausgeschlossen werden.

Eine Nachweisführung über die Höhe der auftretenden magnetischen Flussdichten ist somit gemäß der BlmSchV und der 26. BlmSchVVwV nicht geboten. Im Sinne einer umfassenden Betrachtung sowie der Berücksichtigung des Vorsorgegrundsatzes wurde dennoch die magnetische



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 71 von 85

**Abschnitt Seetrasse** 

Flussdichte berechnet. Die Berechnungen beziehen sich dabei immer auf den Bereich direkt über dem Kabel und stellen damit die maximalen magnetischen Flussdichten für die jeweilige Höhe über dem Kabel dar.

Die genehmigungsrelevanten Anforderungen bezüglich der magnetischen Immissionen stützen sich auf die 26. BImSchV.

Für ortsfeste Gleichstromanlagen ist im Einwirkungsbereich an Orten, die zum dauerhaften oder vorübergehenden Aufenthalt von Menschen bestimmt sind, ein Grenzwert von 500 μT gemäß 26. BlmSchV einzuhalten (§ 3a in Verbindung mit Anhang 1a der 26. BlmSchV). LAI (II.3a.2 und II.3a.3) und 26. BlmSchVVwV (Punkte 3. und 5.1.2) konkretisieren die Anforderungen bezüglich Minimierungsgebot und Einwirkungsbereich.

Die magnetischen Flussdichten wurden für die Bereiche des Genehmigungsabschnittes Küstenmeer berechnet. In allen Fällen wurde der Grenzwert von 500  $\mu T$  [BIM2013] deutlich unterschritten.

Die folgende Tabelle 11 fasst die Berechnungsergebnisse für eine Höhe von 0,2 m (gemäß der LAI-Hinweise, Kapitel III.2.3: S. 56/57) oberhalb der Erdbodenoberfläche zusammen. Je nach Bereich steht der Begriff Bodenoberfläche für die Meeresbodenoberfläche, die Wattbodenoberfläche oder Geländeoberkante.

Tabelle 11: Zusammenfassung der magnetischen Immissionen in 0,2 m Höhe oberhalb der Erdbodenoberfläche gemäß Magnetfeldberechnung [2020].

| Fall                                | Max.<br>magnetische<br>Flussdichte [µT] | In % des<br>Grenzwerts von<br>500 µT |
|-------------------------------------|-----------------------------------------|--------------------------------------|
| Überdeckung 1,5 m, offene Verlegung | 29,6                                    | 5,92                                 |
| Überdeckung 3,0 m, offene Verlegung | 8,8                                     | 1,76                                 |
| Überdeckung 5,0 m, offene Verlegung | 3,4                                     | 0,68                                 |
| Überdeckung 1,5 m, HDD-Bereich      | 198,2                                   | 39,64                                |
| Überdeckung 20,0 m, HDD-Bereich     | 14,2                                    | 2,84                                 |

Die geringsten magnetischen Flussdichten werden bei einer Bündellegung der beiden Pole in den Bereichen der offenen Verlegung erreicht. Das Aufspreizen der Pole in den Bereichen vor und in den HDD-Bohrungen führt zu höheren magnetischen Flussdichten. Die Grenzwerte der magnetischen Flussdichte von 500 µT werden dennoch deutlich unterschritten.

### 7.3. Erwärmung des Meeresbodens

In Anlage 11.1 wird die vom geplanten Vorhaben prognostizierte Erwärmung des Sediments durch das Kabel im Betriebsfall berechnet und ausgewertet. Im Folgenden werden die dort ermittelten Ergebnisse zusammenfassend dargestellt.

Die genehmigungsrelevanten Parameter für das Kabelsystem bezüglich der thermischen Emissionen lauten zusammengefasst:





NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 72 von 85

 Die Erwärmung durch ein Seekabel darf maximal 2 K in einer Aufpunkttiefe von 30 cm im Sediment betragen. (Aufpunkt: Ort, an dem die Temperatur gemessen/berechnet werden soll)

Gemäß FEP 2023 [BSH2023] und veröffentlichter Studien [Ten2012, Nie2017] wurden folgende Eingangsparameter angenommen:

- Die ungestörte Meeresbodentemperatur wird innerhalb der 12 sm-Zone zu 15 °C angenommen.
- Die Aufpunkterwärmung ist durch Berechnung beruhend auf dem Zeitmittelwert der Kabelverluste und Berücksichtigung mehrtägiger Volllastphasen der Windenergieparks zu ermitteln. In dieser Studie wurde das anerkannte Lastszenarium 77 % Vorlast, Sprung auf 99 % für 7 Tage und Rückkehr zu 77 % der maximalen Übertragungsleistung angewandt.
- Der maximale spezifische Wärmwiderstand für den wassergesättigten Boden wird zu 0,7 Km / W angenommen, was einer Wärmeleitfähigkeit von 1,43 W / (m K) entspricht.
- Der maximale Betriebsstrom wurde mit 1905 A angenommen.

Auf der Grundlage der oben aufgeführten Anforderungen wurden Erwärmungsberechnungen mit der Finite-Elemente Methode durchgeführt. Für den Genehmigungsabschnitt Küstenmeer wurden drei Bereiche untersucht: trockenfallendes Wattenmeer, Nordstrand Baltrum bis 10 m-Tiefenlinie und 10 m-Tiefenlinie bis zur 12 sm-Grenze. Die Temperaturerhöhungen am Aufpunkt (30 cm tief im Sediment) sind in der folgenden Tabelle 12 zusammengefasst:

Tabelle 12: Leitertemperaturen und Erwärmungen im Aufpunkt für die drei untersuchten Bereiche bei einem Leiterquerschnitt von 2500 mm².

| Trassenabschnitt                        | Überdeckung /<br>Aufpunkttiefe<br>[m] | System-<br>abstand<br>[m] | Max.<br>Leiter-<br>temperatur<br>[°C] | Max.<br>Aufpunkt-<br>temperatur<br>[°C] | Max.<br>Aufpunkt-<br>erwärmung [K] |
|-----------------------------------------|---------------------------------------|---------------------------|---------------------------------------|-----------------------------------------|------------------------------------|
| Nationalpark                            | 1,5 / 0,3                             | 50                        | 46,62                                 | 16,682                                  | 1,682                              |
| Wattenmeer                              | 5,0 / 0,3                             | 50                        | 51,58                                 | 15,475                                  | 0,475                              |
| Nordstrand Baltrum bis 10 m-Tiefenlinie | 3,0 / 0,3                             | 100                       | 49,42                                 | 15,771                                  | 0,771                              |
| 10 m-Tiefenlinie bis<br>12 sm-Grenze    | 1,5 / 0,3                             | 100 / 200                 | 46,6                                  | 16,634                                  | 1,634                              |

Die grün hinterlegten Zellen der obigen Tabelle zeigen, welche Leiterquerschnitte bei einem maximalen Betriebsstrom von 1905 A das 2 K-Kriterium in den betrachteten Bereichen sicher einhalten.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 73 von 85

#### 8. Betriebsbeschreibung

Aufgabe des Betriebs ist die operative Vorbereitung und Durchführung von Inspektionen, von geplanten und ungeplanten Instandsetzungen sowie von Maßnahmen aus der Fremd- und Bauleitplanung. Zum Betrieb gehört außerdem die Ein- und Unterweisung Dritter.

Für die Netzführung der Leitung ist die zuständige Schaltleitung verantwortlich. Aufgabe der Schaltleitung ist u. a. die Koordination der Abschaltplanung und Durchführung bzw. Anweisung von Schalthandlungen, die Überwachung der Anlage sowie Alarmierung des zuständigen Betriebsbereiches bei Unregelmäßigkeiten.

Die Leitung ist ferngesteuert und rund um die Uhr fernüberwacht. Alle relevanten Betriebszustände werden erfasst und für weitere Auswertungen und Störungsanalysen gespeichert. Mit Inbetriebnahme der Leitung werden die Leiter unter Spannung gesetzt und übertragen den Betriebsstrom und damit die elektrische Leistung. Die elektrischen Daten der Leitung werden kontinuierlich durch automatische Schutzeinrichtungen an den beiden Enden der Leitung auf ihre Sollzustände hin überprüft. Sofern eine Überbeanspruchung feststellt wird, erfolgt die automatische Abschaltung der gestörten Einrichtung vom Netz. Die Schaltleitung informiert den Betrieb, der die Störungsklärung und alle damit verbundenen Handlungen übernimmt bzw. koordiniert.

#### 8.1. Beschreibung des Betriebes der Leitung

Der seeseitige Teil der Leitung unterliegt in den ersten drei Betriebsjahren einer jährlichen Inspektion der Tiefenlage vom Festland bis zur Insel Baltrum sowie von der Insel Baltrum bis zur 12 sm-Grenze. Anhand der Erkenntnisse werden in den darauffolgenden Jahren in Absprache mit den zuständigen Genehmigungsbehörden die Inspektionszyklen neu festgelegt.

Im ersten Betriebsjahr wird eine Untersuchung mittels Flachwasserseismik und elektromagnetischem Kontrollsystem zur Bestimmung der Kabellage als Referenz der zukünftigen Ermittlung der Kabeltiefenlage ausgeführt. Bei einer Veränderung der Kabellage, beispielsweise durch eine Reparatur, muss die Kabellage erneut bestimmt werden.

Während der ersten drei Betriebsjahre werden, neben oben genannter Bestimmung der Kabellage im ersten Jahr, Untersuchungen mittels Seitensichtsonar und Fächerecholot durchgeführt. Diese Untersuchungen erfassen die Wassertiefen sowie die Beschaffenheit der Meeresbodenoberfläche. Hierdurch können Veränderungen der Kabeltiefenlage durch die Erfassung morphologischer Änderungen des Seebodens ermittelt werden.

Wartungs- und Instandsetzungsarbeiten im Seebereich werden nur nach vorheriger Abstimmung mit den zuständigen Behörden durchgeführt und bedürfen ggf. einer gesonderten Genehmigung.

Wartungsarbeiten betreffen die Wiederherstellung der Solllage der Leitung in Bezug auf Position und Überdeckung bzw. das Wiederherstellen der Überdeckung bei Steinschüttungen.

Instandsetzungsarbeiten betreffen die Reparatur von beschädigten oder defekten Kabeln. Die Arbeiten beinhalten die Lokalisierung der Schadensstelle mittels elektromagnetischer Ortung und ggf. Suchgrabungen und das Freispülen einer ausreichend langen Strecke, sodass die Kabel für



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 74 von 85

eine Reparatur zugänglich sind. Das beschädigte Kabel wird unter Wasser geschnitten und das erste Kabelende an Bord des Schiffes gehoben und wasserdicht verschlossen. Danach wird das Kabelende wieder auf den Seeboden abgelegt und gesichert. Das Schiff verholt sich zum zweiten auf dem Seeboden verbliebenen Kabelende und holt dieses an Bord des Schiffes. Danach erfolgen das Entfernen der Fehlstelle und die Herstellung der ersten Muffenverbindung zum neuen Ersatzkabel. Nach Fertigstellung der ersten Muffenverbindung wird diese auf den Seeboden abgelegt und gesichert. Das Schiff verholt sich zum vorher abgelegten Kabelende, um dieses an Bord des Schiffes zu holen. Hiernach wird die zweite Muffenverbindung mit dem bereits vorhandenen Ersatzkabel hergestellt. Wegen der zu überwindenden Wassertiefe entsteht eine Mehrlänge, die in einem Bogen am Meeresboden abgelegt wird. Nach Abschluss der Arbeiten wird die neue Kabellage eingemessen und die Leitung wieder in Betrieb genommen.

## 8.2. Beschreibung des Betriebs im Zusammenhang mit der Schiffsverkehrssituation

Im nachfolgenden Kapitel 8.2.1 werden zunächst potenzielle Gefahren aus nautischer Sicht beschrieben, die während der Betriebsphase theoretisch auftreten könnten. In Kapitel 8.2.2 werden anschließend die Maßnahmen erläutert, die diese Risiken auf ein zulässiges Maß begrenzen.

#### 8.2.1. Gefahrendarstellung in der Betriebsphase

Aus nautischer Sicht nimmt das Risiko nach Abschluss der Bauphase ab. Folgende Risiken konnten als dauerhafte Gefahren für das LanWin1 (NOR-12-1) Kabel identifiziert werden:

- Aufankern von Schiffen (Ankern, rutschender Anker, Notankern)
- Schleppen von Fanggeräten am Meeresboden über die Kabeltrassen
- Kollision der Instandhaltungs- oder Vermessungsfahrzeugen mit anderen Verkehrsteilnehmern

Durch Aufankern können Seekabel beschädigt werden. Beim geplanten Ankern kann, wenn die Schiffsführung die Kabeltrasse nicht identifiziert hat, ein Anker auf die Kabeltrasse geworfen werden. Erst durch Eindringen in den Untergrund könnte ein Kabel beschädigt oder zerrissen werden. Diese Situation kann auch bei ungeplanten Notankerungen geschehen. In Schwerwettersituationen kann ein ankerndes Schiff auch vor dem Anker driften. Dabei wird die Kette über den Grund gezogen und der Anker gräbt sich in den Untergrund. Auch in diesem Szenario kann ein Kabel durch den in den Grund eindringenden Anker beschädigt oder gerissen werden.

Im Falle einer Beschädigung sind Reparaturarbeiten durchzuführen. Ankermanöver eines Arbeitsschiffes können ebenfalls eine Gefährdung für weitere Beschädigungen des Seekabels darstellen.

Im Rahmen anderer Nutzungen, wie zum Beispiel bei Baggerarbeiten, können Seekabel freigelegt werden. In diesem Fall können sich ankernde Schiffe oder Fischereifahrzeuge in den freigelegten Kabeln verfangen.

Die kommerzielle Fischerei stellt bei zu geringer Vergrabungstiefe eine weitere mögliche Gefahr für das Unterwasserkabel dar. Das Schleppen von Fanggeräten am Meeresboden könnte zu Schäden durch Stöße oder Verhakungen führen. Die Kabel könnten auch eine Gefahr für die



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 75 von 85

Fischereifahrzeuge selbst darstellen. Kleine Fischerboote liefen Gefahr, im Falle eines hakenden Netzes zu kentern und zu sinken, wenn sie an einem Hindernis wie einer Kabeltrasse hängen bleiben.

Die Eindringtiefe des Fanggeräts stellt einen entscheidenden Risikofaktor in Bezug auf die Fischerei dar. Mit der Eindringtiefe in den Meeresboden erhöht sich die Gefahr des Verlustes der Ausrüstung. Für die derzeit entlang der Kabeltrasse eingesetzte Fischereimethode werden die folgende Eindringtiefen angenommen (vgl. Thompson 2020):

- Eindringen des Fischereigeräts in Oberflächensand ~0,2 Meter
- Eindringtiefe des Fanggeräts in Schlamm mit geringer Festigkeit ~0,3 Meter

#### 8.2.2. Risikominimierende Maßnahmen in der Betriebsphase

Die Kabel werden mit hinreichender Überdeckung im Meeresboden verlegt. So kann dem Risiko der Kabelbeschädigung durch Ankern und Schleppfischerei vorgebeugt werden. Die Überdeckung der Kabel stellt somit die effektivste Maßnahme zur Risikominimierung während der Betriebsphase dar. Die Festlegung der Mindesttiefenlage im Bereich der Verkehrstrennungsgebiete von 1,5 m beruht auf einer Empfehlung der Bundesanstalt für Wasserbau aus dem Jahr 2012 (vgl. Maushalke et al. 2013). Als initiale Verlegetiefe sind etwa 2 m vorgesehen. Weiterhin wird die Kabeltrasse während der ersten Jahre ihres Betriebs regelmäßig inspiziert (siehe Kapitel 8.1 Beschreibung des Betriebes der Leitung). Es wird sichergestellt, dass starke morphodynamische Bereiche frühzeitig erkannt und gegebenenfalls weitere Schutzmaßnahmen ergriffen werden können.

Das Risiko, das von späteren Bauarbeiten entlang der Kabeltrasse ausgeht, soll durch die öffentliche Bekanntmachung der genauen Position der Kabel minimiert werden. Bei der Durchführung von Reparaturen sollten die Maßnahmen zur Risikominimierung in der Bauphase berücksichtigt werden.

Der Gefahr des Aufankerns wird durch eine ausreichende dauerhafte Mindestüberdeckung des Kabels von 1,5 Metern Rechnung getragen. Die Mindestdeckung garantiert, dass das Aufankern von kleineren Fahrzeugen und Fischereifahrzeugen sehr unwahrscheinlich ist. Der Grund dafür ist, dass die zum Durchdringen der Abdeckung erforderlichen Kräfte nicht vorhanden sind. Die Mehrzahl der passierenden Schiffe im Bereich des Verkehrstrennungsgebietes "Terschelling German Bight" werden Anker im Maximum bis ca. 17,5 t Masse besitzen. Die Eindringtiefe von Ankern bis zu 17,5 t liegt unter 1,5 m, womit die Gefährdung durch größere Anker als minimal einzustufen ist. Im unwahrscheinlichen Fall, dass der Anker eines Schiffes dennoch mit dem Kabelsystem in Berührung kommt, kann davon ausgegangen werden, dass nur das Kabelsystem beschädigt wird. Es wird kein Schaden am Schifferwartet.

Ein weiteres mögliches Szenario besteht darin, dass ein sinkendes Schiff (ein driftendes oder vor Anker liegendes Fahrzeug) nicht durch den Anker gehalten werden kann und auf die Kabelsysteme treibt. Werden entsprechende Notmeldungen von Havaristen durchgegeben, können durch die Notfallzentralen entsprechende Gegenmaßnahmen getroffen werden (z. B. Abschalten des Stromes). Darüber hinaus ist es möglich, dass ein kleineres Schiff mit seinem Anker an einem Seekabel hängen bleibt. Das ist nur denkbar, wenn ein Seekabel freigelegt wurde. Das Hieven des Ankers kann das Kabel zerreißen, im Minimum zu Beschädigungen des Kabels führen. Durch



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 76 von 85

Slippen der Ankerkette kann der Gefahr der Beschädigung des Kabels begegnet werden. In solch seltenen Fällen ist die Zusammenarbeit aller Beteiligten notwendig, um eine schnelle und effiziente Lösung zu finden. In diesem Zusammenhang ist die Vorhabenträgerin für Lösungsvorschläge und die Koordinierung verantwortlich.

Die Kabeltrassen werden nach den Vorgaben der Internationalen Hydrographischen Organisation (IHO) auf Seekarten eingezeichnet. Somit sind die Kabeltrassen in den Seekarten dauerhaft markiert und für die Schiffsbesatzung identifizierbar.

Tabelle 13 gibt einen Überblick über die mögliche Gefährdung, die damit verbundenen Risiken und die Maßnahmen zur Risikominimierung in der Betriebsphase.

Tabelle 13: Maßnahmen zur Risikominimierung in der Betriebsphase.

| Gefahr                                                                              | Risiken                                                                                                        | Risikominimierende Maßnahmen                             |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Fischerei (Schleppfischen am<br>Meeresboden) & Berufs-<br>schifffahrt (Ankerwerfen) | Aufprall-, Verhakungs- oder<br>Überziehschäden von geschleppten<br>oder abgeworfenen Ankern oder<br>Fanggerät. | Kennzeichnung auf der Seekarte                           |
|                                                                                     |                                                                                                                | Ankerverbot im VTG "German Bight Western Approach"       |
|                                                                                     |                                                                                                                | Hinreichende Verlegungstiefe                             |
|                                                                                     |                                                                                                                | Regelmäßige Inspektionen und Prüfung auf Kabelschwingung |
|                                                                                     |                                                                                                                | ONAS im Störungsfall sofort automatisch abschaltbar      |
|                                                                                     |                                                                                                                | Slippen der Ankerkette                                   |
| Offshore-Konstruktion/<br>Instandhaltung                                            | Kollision der Instandhaltungs- oder<br>Vermessungsfahrzeuge mit anderen<br>Verkehrsteilnehmern                 | Einhaltung der<br>Kollisionsverhütungsregeln             |
|                                                                                     |                                                                                                                | Nachrichten und<br>Bekanntmachungen für Seefahrer        |
|                                                                                     |                                                                                                                | Zügige Durchführung der<br>Wartungsarbeiten              |



Projekt/Vorhaben: Kony

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 77 von 85

#### 9. Grundstücksinanspruchnahme und Leitungseigentum

#### 9.1. Allgemeine Hinweise

Die von dem Vorhaben temporär und dauerhaft in Anspruch genommenen Bereiche sind in den Grunderwerbsplänen (Anlage 4) zeichnerisch dargestellt. Die Grunderwerbsunterlagen (Anlagen 4 und 9) stellen dabei sämtliche für die Herstellung und das sichere Betreiben der Leitung erforderliche eigentumsrechtliche Betroffenheiten (Grundstücke) und Flächen dar. Die Eigentumsverhältnisse sind im Grunderwerbsverzeichnis (Anlage 9.1) verschlüsselt aufgelistet.

Die seeseitig in Anspruch genommenen Grundstücke stehen als Bundeswasserstraße im Eigentum der Bundesrepublik Deutschland. Auf Baltrum und auf dem Festland werden zudem Bereiche auf Grundstücken privater und weiterer öffentlicher Eigentümer in Anspruch genommen. Die Flächeninanspruchnahme erfolgt teilweise temporär im Rahmen der Baumaßnahmen (BE-Flächen, Zuwegungen, Ver-, Entsorgungs- und Rückspülleitungen) und teilweise dauerhaft zum Betrieb und zur Gewährleistung der Reparaturfähigkeit der Leitung (Schutzstreifen).

Mit allen betroffenen Eigentümern und ggf. Pächtern sind entsprechende Gestattungsverträge abzuschließen.

#### 9.2. Dauerhafte Inanspruchnahme von Grundstücken

Im Bereich vom Bohreintritt binnendeichs bis zum Nordstrand Baltrum wird zum Schutz der Leitung ein Schutzstreifen von 5 m beidseitig zur Leitungsachse ausgewiesen. Dies gilt auch für die beiden Rückspülleitungen, um auch im Betrieb zu gewährleisten, dass bei einer reparaturbedingten erneuten Herstellung einer HDD das Bohrklein entsprechend abtransportiert werden kann. Darüber hinaus wird binnendeichs im Bereich der gebündelten Verlegung bis zur Übergangsmuffe zum Landkabel ein Schutzstreifen von 7,5 m ausgewiesen.

Dieser Schutzstreifen stellt die zum Bau und Betrieb der Leitung dauerhaft gemäß den Bestimmungen der zu begründenden beschränkten persönlichen Dienstbarkeit in Anspruch zu nehmenden Grundstücksflächen dar. Das Eigentum an dieser Fläche verbleibt beim Grundstückseigentümer.

Für die dauerhafte Grundstücksinanspruchnahme werden die Grundstücksbenutzungsrechte durch die Eintragung beschränkter persönlicher Dienstbarkeiten in Abteilung II des jeweiligen Grundbuches dinglich abgesichert. Die Vorhabenträgerin wird durch die Dienstbarkeit berechtigt, die Leitung zu errichten und zu betreiben, zudem werden auch der von der Leitung in Anspruch genommene Schutzstreifen und dauerhafte Zuwegungen mittels der Dienstbarkeit gesichert. Voraussetzung für die Eintragung einer beschränkten persönlichen Dienstbarkeit im Grundbuch ist eine öffentlich beglaubigte Eintragungsbewilligung des jeweiligen Grundstückseigentümers. Hierfür werden mit den betroffenen Grundstückseigentümern privatrechtliche Verträge abgeschlossen mit dem Ziel, gegen Bezahlung einer angemessenen Entschädigung für dingliche Belastung des Grundstücks die Eintragung einer beschränkten persönlichen Dienstbarkeit im jeweiligen Grundbuch in der Abteilung II zu bewilligen.

Die beschränkte persönliche Dienstbarkeit gestattet der Vorhabenträgerin und von ihr beauftragten



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Seite 78 von 85

**Abschnitt Seetrasse** 

Dritten alle Maßnahmen im Zusammenhang mit Bau, Betrieb und Unterhaltung der erdverlegten Leitungen.

Es dürfen innerhalb des Schutzstreifens keine baulichen und sonstigen Anlagen errichtet werden. Im Schutzstreifen dürfen ferner keine Bäume und Sträucher angepflanzt werden, die durch ihr Wachstum den Bestand oder den Betrieb der Leitung beeinträchtigen oder gefährden können. Bäume und Sträucher dürfen, auch soweit sie außerhalb des Schutzstreifens stehen und in den Schutzstreifenbereich hineinragen, von der Vorhabenträgerin entfernt werden, wenn durch deren Wachstum der Bestand oder Betrieb der Leitungen beeinträchtigt oder gefährdet wird. Geländeveränderungen im Schutzstreifen sind verboten. Auch sonstige Einwirkungen und Maßnahmen, die den ordnungsgemäßen Bestand oder Betrieb der Leitung oder des Zubehörs beeinträchtigen oder gefährden können, sind untersagt.

Die vom Schutzstreifen des Erdkabels in Anspruch genommenen Grundstücke müssen zum Zwecke des Baues, des Betriebes und der Unterhaltung der Leitung jederzeit benutzt, betreten und befahren werden können.

Ein Muster des vorgesehenen Dienstbarkeitstextes ist in Anlage 9.2 beigefügt.

Sollte ein freihändiger Vertragsschluss nicht zustande kommen, kann die Enteignungsbehörde die Vorhabenträgerin auf Grundlage des Planfeststellungsbeschlusses vorzeitig in den Besitz der Flächen einweisen, um die Durchführung der notwendigen Arbeiten zu gewährleisten.

Soweit das Vorhaben Grundstücke im Bereich des Küstenmeers in Anspruch nimmt, werden Gestattungsverträge mit der Bundesrepublik Deutschland als Eigentümer dieser Grundstücke abzuschließen sein. Die alleinige Eigentumsstellung der Bundesrepublik ergibt sich daraus, dass es sich beim Küstenmeer um Seewasserstraßen und damit um Bundeswasserstraßen handelt, § 1 Absatz 1 Nummer 2, Absatz 2 WaStrG. Das Eigentum an Bundeswasserstraßen steht nach Maßgabe des § 4 Absatz 1 Satz 1 WHG der Bundesrepublik Deutschland zu.

#### 9.3. Vorübergehende Inanspruchnahme von Grundstücken

Bestimmte Grundstücke werden für die Herstellung der Leitung nur vorübergehend genutzt, z. B. durch Baufahrzeuge im Rahmen der Bauarbeiten. Die Nutzung betrifft Arbeits-, Lagerflächen und temporäre Zuwegungen entlang der Leitungstrasse. Aufgrund der nur vorübergehenden Nutzung ist eine dingliche Sicherung dieser Flächen im Grundbuch voraussichtlich nicht erforderlich.

Die Lage der Zuwegungen ist in den Wegenutzungsplänen in den Anlagen 2.2 und 2.3 sowie in den Grunderwerbsplänen in Anlage 4 dargestellt.

Damit die betroffenen Grundstücke für die Arbeiten vorübergehend in Anspruch genommen werden können, wird die Vorhabenträgerin entsprechende Gestattungsverträge mit den betroffenen Grundstückseigentümern abschließen, sofern die Inanspruchnahme nicht über die ohnehin abzuschließenden Nutzungsverträge geregelt ist.

Sollte ein freihändiger Vertragsschluss nicht zustande kommen, kann die Enteignungsbehörde die



Projekt/Vorhaben:

## Anlage 1 Erläuterungsbericht

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 79 von 85

Vorhabenträgerin auf Grundlage des Planfeststellungsbeschlusses vorzeitig in den Besitz der Flächen einweisen, um die Durchführung der notwendigen Arbeiten zu gewährleisten.

#### 9.4. Entschädigungen

Für die mit der Inanspruchnahme der Grundstücke sowie der dinglichen Belastung im Grundbuch einhergehenden Wertminderung wird den betroffenen Grundstückseigentümern eine Entschädigung in Geld gewährt.

Die bei den Arbeiten in Anspruch genommenen Grundflächen lässt die Vorhabenträgerin wiederherrichten. Darüber hinaus ersetzt sie den Grundstückseigentümern oder Pächtern den durch Bau- und spätere Unterhaltungs- oder Instandsetzungsmaßnahmen nachweislich entstandenen Flurschaden wie z.B. Ernteausfälle.

#### 9.5. Kreuzungsverträge/Gestattungen

Sofern öffentliche Verkehrs- und Wasserwege genutzt oder gequert werden, wird eine rechtliche Sicherung durch Kreuzungs- bzw. Gestattungsverträge mit den entsprechenden Beteiligten umgesetzt.

#### 9.6. Wegenutzung

Im Landbereich des Vorhabens ist für dessen Erreichbarkeit während der gesamten Bau- und Betriebsphase die Nutzung öffentlicher Straßen und Wege notwendig. Sofern nicht klassifizierte Straßen und Wege sowie nicht dem öffentlichen Verkehr gewidmete Wege bei Bedarf ebenfalls genutzt werden müssen, sind diese in den Wegenutzungsplänen HDD-Bohrungen (Anlage 2.2) und Kabelinstallation (Anlage 2.3) gekennzeichnet. Sofern im Landbereich des Vorhabens temporäre, baubedingte oder dauerhafte, betriebsbedingte Zuwegungen angelegt werden müssen, sind diese im Grunderwerbsplan (Anlage 4) dargestellt und im Grunderwerbsverzeichnis (Anlage 9.1) erfasst. Unter Umständen sind weitere Maßnahmen zu ergreifen, um die temporäre Befahrbarkeit von Zuwegungen zu gewährleisten (z. B. Verrohrung von Gräben, Verbreiterung von Wegen, Erhöhung der Tragfähigkeit von Wegen).

Bezüglich erforderlicher Grundstücksgestattungsverträge siehe Kapitel 9.2 Dauerhafte Inanspruchnahme von Grundstücken bzw. Vorübergehende Inanspruchnahme von Grundstücken.

#### 9.7. Erläuterung zum Grunderwerbsverzeichnis (Anlage 9.1)

Im Grunderwerbsverzeichnis (Anlage 9.1) werden leitungsbezogen die vom geplanten Vorhaben betroffenen Flurstücke nach den laufenden Eigentümerschlüsselnummern aufgeführt. Das Grunderwerbsregister beinhaltet die folgenden Angaben:

#### Spalte 1: Eigentümerschlüsselnummer:

Jedem Grundstückseigentümer, dessen Grundstücksflächen durch das Vorhaben in Anspruch genommen werden, ist eine Eigentümerschlüsselnummer zugeordnet. Das Grunderwerbsverzeichnis ist nach diesen Eigentümernummern aufsteigend sortiert.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung

Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 80 von 85

Spalte 2: Blattnummer Grunderwerbsplan:

Angabe, auf welchem Blatt der Grunderwerbspläne (Anlage 4) das jeweilige

Grundstück zu finden ist.

Spalte 3: Grundbuch:

Projekt/Vorhaben:

Angaben zum Grundbuch und Bestandsverzeichnis.

Spalte 4: Flurstückdaten:

Angaben zur Flur- und Flurstücknummer, Flächengröße sowie Nutzungsart des

Flurstücks.

Spalte 5: Flächeninanspruchnahme:

Angaben zur Größe der Inanspruchnahme des Grundstücks, unterteilt in folgende

Angaben:

dauernd S-Bereich (Kabel-Schutzstreifen)

vorübergehend Arbeitsfläche (Baustelleneinrichtung Kabel)

dauerhaft Zuwegungen (für den Kabelbetrieb)

temporär Zuwegungen (für die Dauer der Baumaßnahmen)

Spalte 6: Bemerkungen:

z. B. Muffenstandorte

#### 9.8. Erläuterungen zum Kreuzungsverzeichnis (Anlage 5)

Im Kreuzungsverzeichnis (Anlage 5) sind die durch das Vorhaben gekreuzten folgenden Objekte aufgeführt:

- Straßen und Wege
- Gräben
- Deiche
- Ermittelte ober-/unterirdische Versorgungsleitungen oder -anlagen
- Sonstige Bauwerke

In den Grunderwerbsplänen (Anlage 4) sind die Objekte dargestellt. Jede im Kreuzungsverzeichnis aufgeführte Kreuzung mit einem Objekt hat eine Nummer (siehe Spalte 2 der Tabelle), die sich in den Grunderwerbsplänen wiederfindet. Zudem wird in Spalte 4 der Tabelle noch die Lage der Objekte zwischen den Punkten der Route Position List (Anlage 4A) angegeben.



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Projekt/Vorhaben:

Konverterplattform NOR-12-1 - Unterweser

**Abschnitt Seetrasse** 

Seite 81 von 85

#### 10. Regeln und Richtlinien

Die Durchführung der Baumaßnahmen erfolgt nach den einschlägigen Regeln der Technik und den technischen Baubestimmungen, den DIN- und EN-Normen. Konkrete Vorschriften sind in den Baubeschreibungen in Anlage 3 aufgelistet.

Für den späteren Betrieb gilt insbesondere DIN VDE 0105-100 – Betrieb von elektrischen Anlagen sowie die 26. BimSchV.



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser Abschnitt Seetrasse

Seite 82 von 85

#### Literaturverzeichnis

BNetzA 2021: Bestätigung des Netzentwicklungsplan Strom. Abgerufen von https://www.netzentwicklungsplan.de/sites/default/files/paragraphs-

files/NEP2035\_Bestaetigung.pdf (zuletzt aktualisiert im Januar 2021, zugegriffen am 26.01.2023) BNetzA 2023: Netzentwicklungsplan 2037/2045, Version 2023, 2. Entwurf, Teil 1. https://www.netzentwicklungsplan.de/sites/default/files/2023-

07/NEP\_2037\_2045\_V2023\_2\_Entwurf\_Teil1\_1.pdf (zugegriffen am 10.10.2023)

BnetzA 2024: Bestätigung des Netzentwicklungsplans Strom. https://data.netzausbau.de/2037-2023/NEP/NEP\_2037\_2045\_Bestaetigung.pdf (zugegriffen am 04.03.2024)

BSH 2023: Flächenentwicklungsplan 2023 für die deutsche Nord- und Ostsee. Abgerufen von https://www.bsh.de/DE/THEMEN/Offshore/Meeresfachplanung/Flaechenentwicklungsplan/\_Anla gen/Downloads/FEP\_2023\_1/Flaechenentwicklungsplan\_2023.pdf?\_\_blob=publicationFile&v=1 (zuletzt aktualisiert am 20.01.2023, zugegriffen am 26.01.2023

Bundesregierung 2021: Koalitionsvertrag 2021. Abgerufen von https://www.bundesregierung.de/resource/blob/974430/1990812/04221173eef9a6720059cc353d 759a2b/2021-12-10-koav2021-data.pdf?download=1 (zuletzt aktualisiert 2021, zugegriffen am 26.01.2023)

GDWS 2016: Verkehrsbericht 2014/2015. Abgerufen von https://www.gdws.wsv.bund.de/Shared-Docs/Downloads/DE/Verkehrsberichte/Verkehrsbericht\_2014\_2015.pdf? blob=publicationFile&v=3 (zuletzt aktualisiert 10.2016, abgerufen am 11.07.2020)

GDWS 2017: Verkehrsbericht 2016. Abgerufen von https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Verkehrsberichte/Verkehrsbericht\_20 17.pdf?\_\_blob=publicationFile&v=3 (zuletzt aktualisiert 06.12.2017, abgerufen am 26.01.2023)

GDWS 2018: Verkehrsbericht 2017. Abgerufen von: https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Verkehrsberichte/Verkehrsbericht\_20 18.pdf?\_\_blob=publicationFile&v=3 (zuletzt aktualisiert am 29.11.2018, abgerufen am 26.01.2023).

GDWS 2019: Verkehrsbericht 2018. Abgerufen von https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Verkehrsberichte/Verkehrsbericht\_20 19.pdf? blob=publicationFile&v=3 (zuletzt aktualisiert 10.2019, abgerufen am 26.01.2023

GDWS 2023: Verkehrsbericht 2022. Abgerufen von https://www.gdws.wsv.bund.de/SharedDocs/Downloads/DE/Verkehrsberichte/Verkehrsbericht\_20 22.pdf;jsessionid=A298EFFF8AAAE5505792705322FD1D6E.live21323?\_\_blob=publicationFile& v=2 (zuletzt aktualisiert Oktober 2022, abgerufen am 12.10.2023)

IMO 1997: Amendment to the Traffic Separation Scheme (TSS) "German Bight Western Approach". Abgerufen von https://www.navcen.uscg.gov/pdf/imo/COLREGSCirculars/COLREG2-Circ38Add1.pdf (zuletzt aktualisiert am 14. Mai 1997, zugegriffen am 09.07.2020)



Seite 83 von 85

Projekt/Vorhaben: Kon

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Maushalke, Christian; Lambers Huesmann, Maria; Hümbs, Peter 2013: Untersuchung des Eindingverhaltens von Schiffsankern mittels Ankerzugveruschen: Bericht zur Vermessung der Ankereindringtiefe.

Thompson, Peter 2020: Abgerufen von: http://english.northconnect.no/file/cable-burial-risk-assess- ment.pdf (zugegriffen am 20. Juli 2020)



NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung
Projekt/Vorhaben: Konverterplattform NOR-12-1 – Unterweser

Abschnitt Seetrasse

Seite 84 von 85

#### Rechtsquellenverzeichnis

Bundesnaturschutzgesetz vom 29. Juli 2009 (BGBI. I S. 2542), zuletzt geändert durch Artikel 3 des Gesetzes vom 8. Dezember 2022 (BGBI. I S. 2240)

Bundeswasserstraßengesetz in der Fassung der Bekanntmachung vom 23. Mai 2007 (BGBI. I S: 962, 2008 I S. 1980), zuletzt geändert durch Artikel 3 der Verordnung vom 18. August 2021 (BGBI. I S. 3901).

Energiewirtschaftsgesetz in der Fassung der Bekanntmachung vom 7. Juli 2005 (BGBI. I S. 1970, 3621, zuletzt geändert durch Artikel 3 des Gesetzes vom 4. Januar 2023 (BGBI. I Nummer 9)

Grundgesetz für die Bundesrepublik Deutschland in der im Bundesgesetzblatt Teil III, Gliederungsnummer 100-1, veröffentlichten Fassung, zuletzt geändert durch Artikel 1 des Gesetzes vom 19. Dezember 2022 (BGBI. I S. 2478)

Netzausbaubeschleunigungsgesetz Übertragungsnetz in der Fassung der Bekanntmachung vom 28. Juli 2011 (BGBI. I S. 1690), zuletzt geändert durch Artikel 4 des Gesetzes vom 8. Oktober 2022 (BGBI. I S. 1726)

Neubekanntmachung der Verordnung über das Landesraumordnungsprogramm Niedersachsen in der Fassung der Bekanntmachung vom 26. September 2017 (Nds. GVBI- Nummer 20/2017, S. 378)

Niedersächsisches Raumordnungsgesetz in der Fassung der Bekanntmachung vom 6. Dezember 2017 (Nds. GVBI. 2017, 456), zuletzt geändert durch Artikel 2 des Gesetzes vom 22. September 2022 (Nds. GVBI. S. 582)

Niedersächsisches Verwaltungsverfahrensgesetz in der Fassung der Bekanntmachung vom 3. Dezember 1976 (Nds. GVBI. 1976 S. 361), zuletzt geändert durch Artikel 1 des Gesetzes vom 24.09.2009 (Nds. GVBI, S. 361)

Raumordnungsgesetz in der Fassung der Bekanntmachung vom 22. Dezember 2008 (BGBI. I S. 2986), zuletzt geändert durch Artikel 159 der Verordnung vom 03. Dezember 2020 (BGBL. I S. 2694)

Satzung über die Feststellung des Regionalen Raumordnungsprogramms (RROP) für den Landkreis Aurich in der Fassung der Bekanntmachung vom 25.Oktober 2019 (Amtsblatt LK Aurich – Nummer 44/2019 S. 522)

Verordnung über elektromagnetischen Felder in der Fassung der Bekanntmachung vom 14. August 2013 (BGBI. I S. 3266)

Verwaltungsverfahrensgesetz in der Fassung der Bekanntmachung vom 23. Januar 2003 (BGBI. I S. 102), zuletzt geändert durch Artikel 1 des Gesetzes vom 4. Dezember 2023 (BGBI. 2023 I Nr. 344)



Projekt/Vorhaben:

NOR-12-1 (LanWin1) / +-525-kV-DC-Leitung Konverterplattform NOR-12-1 – Unterweser

**Abschnitt Seetrasse** 

Seite 85 von 85

Wasserhaushaltsgesetz in der Fassung der Bekanntmachung vom 31. Juli 2009 (BGBI. I S. 2585), zuletzt geändert durch Artikel 1 des Gesetzes vom 4. Januar 2023 (BGBI. I 5)

Windenergie-auf-See-Gesetz in der Fassung der Bekanntmachung vom 13. Oktober 2016 (BGBI. I S. 2258, 2310), zuletzt geändert durch Artikel 2 des Gesetzes vom 20. Dezember 2022 (BGBL. I S. 2512)